Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 779018, 2021.
Article in English | MEDLINE | ID: mdl-34917601

ABSTRACT

Chronic inflammation is considered a pressing health issue that needs resolving. Inflammatory disease such as inflammatory bowel disease requires a long-term medical regimen to prevent disease progression. Conventionally, lactoferrin is used to treat mild gastrointestinal tract and skin inflammation. Protease-digested lactoferrin fragments often exhibit improved therapeutic properties compared to full-length lactoferrin (flHLF). However, there are no studies on the use of protease-digested lactoferrin fragments to treat inflammation. Herein, we assess the anti-inflammatory properties of engineered recombinant lactoferrin fragments (rtHLF4, rteHLF1, and rpHLF2) on non-malignant colonic fibroblast cells and colorectal cancer cells. We found that rtHLF4 is 10 times more effective to prevent inflammation compared to flHLF. These results were investigated by looking into the reactive oxygen species (ROS) production, angiogenesis activity, and cellular proliferation of the treated cells. We have demonstrated in this study the anti-inflammatory properties of the flHLF and the various lactoferrin fragments. These results complement the anti-cancer properties of these proteins that were demonstrated in an earlier study.

2.
Biochem Biophys Res Commun ; 529(3): 784-792, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736708

ABSTRACT

BACKGROUND: CD4+ T helper 17 (Th17) cells play a contributory role in uveitis and other autoimmune disorders. However, less is understood about the contribution of microRNAs (miRNAs) in regulating the pathogenic Th17 response in uveitis. METHODS: The in vivo experimental autoimmune uveitis (EAU) model was constructed in female C57BL/6 mice. Primary EAU mouse CD4+ T-cells and the murine T-cell line EL4 were used for in vitro experiments. miRNA mimic/inhibitor, lentiviral overexpression plasmids, and small interfering RNAs (siRNAs) were used to modulate miR-182-5p and TAF15 expression. CD4+ T-cells from healthy controls (HC, n = 15), active Behçet's disease with uveitis (BD, n = 15), or active sympathetic ophthalmia with uveitis (SO, n = 15) were analyzed for miR-182-5p, TAF15, and Th17 marker gene expression. RESULTS: miR-182-5p was downregulated in EAU mouse-derived Th17 cells. miR-182-5p negatively regulated Th17 cell development in vitro. miR-182-5p mimic therapy in transplanted Th17 cells ameliorated EAU severity in vivo. Mechanistically, miR-182-5p directly inhibited the transcriptional initiator TATA-binding protein-associated factor 15 (TAF15, TAFII68). miR-182-5p's inhibition of TAF15 negatively regulated Th17 cell development by suppressing STAT3 phosphorylation. TAF15 and Th17 marker expression were positively correlated in CD4+ T-cells from BD and SO patients. CONCLUSION: miR-182-5p mimic therapy inhibits the pathogenic Th17 response in EAU mice. miR-182-5p's inhibition of TAF15 negatively regulates Th17 cell development by suppressing STAT3 phosphorylation. As TAF15 shows a positive relationship with Th17 cell markers in uveitis patients, the miR-182-5p/TAF15 axis shows promise as a therapeutic target for uveitis.


Subject(s)
MicroRNAs/genetics , TATA-Binding Protein Associated Factors/genetics , Th17 Cells/pathology , Uveitis/genetics , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Autoimmune Diseases/therapy , Cells, Cultured , Disease Models, Animal , Down-Regulation , Female , Humans , Mice , Mice, Inbred C57BL , Th17 Cells/transplantation , Uveitis/pathology , Uveitis/therapy
3.
Cancer Biomark ; 28(4): 483-497, 2020.
Article in English | MEDLINE | ID: mdl-32568179

ABSTRACT

BACKGROUND: Despite notable progression from a therapeutic point of view, castration resistant prostate cancer (CRPC) remains a clinical significant stumbling block. The current study aimed to elucidate the functional role of the gene glucocorticoid receptor (GR) in CRPC, and identify the contributions of the GR gene in CRPC in connection with microRNA-143-3p (miR-143-3p)/Jagged1 (JAG1)/NOTCH2. METHODS: The expression of GR and miR-143-3p in CRPC tissues and cells as well as JAG1/NOTCH2 expression in CRPC tissues was initially determined by quantitative polymerase chain reaction and Western blot analyses. The relationship among GR, JAG1, NOTCH2 and miR-143-3p was subsequently verified using the dual-luciferase reporter gene assay. ChIP assay confirmed the binding of GR to miR-143-3p promoter. Gain- and loss-function approaches were applied to ascertain the role of GR and miR-143-3p in progression of CRPC. Additionally, xenograft tumor models in nude mice were established to further confirm our results. RESULTS: GR was found to be highly expressed while miR-143-3p was lowly expressed in the CRPC tissues and cells. Silencing GR reduced migration, invasion, proliferation and increased apoptosis of CRPC cells. GR was enriched in the miR-143-3p promoter region and could down-regulate miR-143-3p expression. The overexpression of miR-143-3p led to a reduction in the migration, invasion, proliferation and increased apoptosis of CRPC cells. JAG1 and NOTCH2 were the target genes of miR-143-3p, and GR up-regulated the JAG1/NOTCH2 expression by down-regulating miR-143-3p. Silencing JAG1/NOTCH2 inhibited epithelial-mesenchymal transition and CRPC progression in vitro. Furthermore, the in vitro findings were reproduced in the in vivo experiments. CONCLUSION: The key findings of the current study demonstrated that silencing GR suppressed the progression of CRPC through the JAG1/NOTCH2 pathway via up-regulation of miR-143-3p.


Subject(s)
Jagged-1 Protein/genetics , MicroRNAs/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Receptor, Notch2/genetics , Receptors, Glucocorticoid/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Silencing , Humans , Jagged-1 Protein/metabolism , Male , Mice , MicroRNAs/metabolism , Promoter Regions, Genetic , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , Receptor, Notch2/metabolism , Receptors, Glucocorticoid/genetics , Signal Transduction/genetics , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...