Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 19(19): 6577-6588, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37772732

ABSTRACT

Trajectory surface hopping (TSH) is a widely used mixed quantum-classical dynamics method that is used to simulate molecular dynamics with multiple electronic states. In TSH, time-derivative coupling is employed to propagate the electronic coefficients and in that way to determine when the electronic state on which the nuclear trajectory is propagated switches. In this work, we discuss nonadiabatic TSH dynamics algorithms employing the curvature-driven approximation and overlap-based time derivative couplings, and we report test calculations on six photochemical reactions where we compare the results to one another and to calculations employing analytic nonadiabatic coupling vectors. We correct previous published results thanks to a bug found in the software. We also provide additional, more detailed studies of the time-derivative couplings. Our results show good agreement between curvature-driven algorithms and overlap-based algorithms.

2.
J Chem Theory Comput ; 19(9): 2419-2429, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37079755

ABSTRACT

It has been recommended that the best representation to use for trajectory surface hopping (TSH) calculations is the fully adiabatic basis in which the Hamiltonian is diagonal. Simulations of intersystem crossing processes with conventional TSH methods require an explicit computation of nonadiabatic coupling vectors (NACs) in the molecular-Coulomb-Hamiltonian (MCH) basis, also called the spin-orbit-free basis, in order to compute the gradient in the fully adiabatic basis (also called the diagonal representation). This explicit requirement destroys some of the advantages of the overlap-based algorithms and curvature-driven algorithms that can be used for the most efficient TSH calculations. Therefore, although these algorithms allow one to perform NAC-free simulations for internal conversion processes, one still requires NACs for intersystem crossing. Here, we show that how the NAC requirement is circumvented by a new computation scheme called the time-derivative-matrix scheme.

3.
J Chem Theory Comput ; 19(6): 1672-1685, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36877830

ABSTRACT

Mixed quantum-classical nonadiabatic dynamics is a widely used approach to simulate molecular dynamics involving multiple electronic states. There are two main categories of mixed quantum-classical nonadiabatic dynamics algorithms, namely, trajectory surface hopping (TSH) in which the trajectory propagates on a single potential energy surface, interrupted by hops, and self-consistent-potential (SCP) methods, such as semiclassical Ehrenfest, in which propagation occurs on a mean-field surface without hops. In this work, we will illustrate an example of severe population leaking in TSH. We emphasize that such leaking is a combined effect of frustrated hops and long-time simulations that drive the final excited-state population toward zero as a function of time. We further show that such leaking can be alleviated-but not eliminated-by the fewest switches with time uncertainty TSH algorithm (here implemented in the SHARC program); the time uncertainty algorithm slows down the leaking process by a factor of 4.1. The population leaking is not present in coherent switching with decay of mixing (CSDM), which is an SCP method with non-Markovian decoherence included. Another result in this paper is that we find very similar results with the original CSDM algorithm, with time-derivative CSDM (tCSDM), and with curvature-driven CSDM (κCSDM). Not only do we find good agreement for electronically nonadiabatic transition probabilities but also we find good agreement of the norms of the effective nonadiabatic couplings (NACs) that are derived from the curvature-driven time-derivative couplings as implemented in κCSDM with the time-dependent norms of the nonadiabatic coupling vectors computed by state-averaged complete-active-space self-consistent field theory.

4.
Waste Manag ; 161: 203-212, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36893714

ABSTRACT

In melting municipal solid waste incineration (MSWI) fly ash by cyclone furnace, the deposition characteristics of particles affect the slag flow and the secondary MSWI fly ash formation. In this study, the composition mechanism based on critical viscosity is selected as the particle deposition model to predict the deposition and rebound of particles on the furnace wall. The Riboud model with an accurate viscosity prediction performance is selected, then the particle deposition model is integrated into a commercial computational fluid dynamics (CFD) solver through the user-defined function (UDF) to realize the coupling of particle motion and deposition process. The results show that under the same case, the deposition rate decreases obviously with the increase of MSWI fly ash particle size. And the escape rate reaches a maximum at particle size 120 µm. Controlling the particle size of fly ash particles within 60 µm can effectively reduce the generation of secondary MSWI fly ash. During the forward movement of the fly ash inlet position, the escape of MSWI fly ash particles with large particle sizes has been significantly weakened. This measure not only lowers the post-treatment cost but also dramatically reduces the pretreatment step of MSWI fly ash before the melting and solidification process. In addition, the deposition rate and quality will reach the maximum values, respectively, along with gradually increasing MSWI fly ash input flow. Overall, this study has the guiding significance for reducing the pretreatment steps and post-treatment costs of MSWI fly ash by melting in the cyclone furnace.


Subject(s)
Cyclonic Storms , Metals, Heavy , Refuse Disposal , Incineration , Coal Ash , Solid Waste , Metals, Heavy/analysis , Carbon , Particulate Matter
5.
J Chem Theory Comput ; 18(12): 7073-7081, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36350795

ABSTRACT

The photoinduced ring-opening reaction of 1,3-cyclohexadiene to produce 1,3,5-hexatriene is a classic electrocyclic reaction and is also a prototype for many reactions of biological and synthetic importance. Here, we simulate the ultrafast nonadiabatic dynamics of the reaction in the manifold of the three lowest valence electronic states by using extended multistate complete-active-space second-order perturbation theory (XMS-CASPT2) combined with the curvature-driven coherent switching with decay of mixing (κCSDM) dynamical method. We obtain an excited-state lifetime of 79 fs, and a product quantum yield of 40% from the 500 trajectories initiated in the S1 excited state. The obtained lifetime and quantum yield values are very close to previously reported experimental and computed values, showing the capability of performing a reasonable nonadiabatic ring-opening dynamics with the κCSDM method that does not require nonadiabatic coupling vectors, time derivatives, or diabatization. In addition, we study the ring-opening reaction by initiating the trajectories in the dark state S2. We also optimize the S0/S1 and S1/S2 minimum-energy conical intersections (MECIs) by XMS-CASPT2; for S1/S2, we optimized both an inner and an outer local-minimum-energy conical intersections (LMECIs). We provide the potential energy profile along the ring-opening coordinate by joining selected critical points via linear synchronous transit paths. We find the inner S1/S2 LMECI to be more crucial than the outer one.

6.
J Chem Theory Comput ; 18(6): 3523-3537, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35580263

ABSTRACT

The many-body GW approximation, especially the G0W0 method, has been widely used for condensed matter and molecules to calculate quasiparticle energies for ionization, electron attachment, and band gaps. Because G0W0 calculations are well-known to have a strong dependence on the orbitals, the goal of the present work is to provide guidance on the choice of density functional used to generate orbitals and to recommend a choice that gives the most broadly accurate results. We have systematically investigated the dependence of G0W0 calculations on the orbitals for 100 molecules and 8 crystals by considering orbitals obtained with a diverse set of Kohn-Sham (KS) and generalized KS (GKS) functionals (63 functionals plus Hartree-Fock). The percentage of Hartree-Fock exchange employed in density functionals has been found to have strong influence on the predicted molecular ionization energy and crystal fundamental band gaps (with optimum values between 40 and 56%), but to have less effect on predicting molecular electron affinities. The low cost of the Gaussian implementation, even with hybrid functionals in periodic calculations, the better performance of global hybrids as compared to range-separated hybrids of either than screened exchange or long-range-corrected type, and the relatively low cost of global-hybrid-functional periodic calculations using Gaussians means that one can employ global-hybrid functionals at a very reasonable cost and obtain more accurate band gaps of semiconductors than are obtained by the methods currently widely employed, namely local gradient approximations. We single out three global-hybrid functionals that give especially good results for both molecules (100 in the test set) and crystals (8 in the test set, for all of which our benchmark data are the proper band gap rather than an optical band gap uncorrected for exciton effects).

7.
J Phys Chem A ; 126(7): 992-1018, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35138102

ABSTRACT

Quantitative simulations of electronically nonadiabatic molecular processes require both accurate dynamics algorithms and accurate electronic structure information. Direct semiclassical nonadiabatic dynamics is expensive due to the high cost of electronic structure calculations, and hence it is limited to small systems, limited ensemble averaging, ultrafast processes, and/or electronic structure methods that are only semiquantitatively accurate. The cost of dynamics calculations can be made manageable if analytic fits are made to the electronic structure data, and such fits are most conveniently carried out in a diabatic representation because the surfaces are smooth and the couplings between states are smooth scalar functions. Diabatic representations, unlike the adiabatic ones produced by most electronic structure methods, are not unique, and finding suitable diabatic representations often involves time-consuming nonsystematic diabatization steps. The biggest drawback of using diabatic bases is that it can require large amounts of effort to perform a globally consistent diabatization, and one of our goals has been to develop methods to do this efficiently and automatically. In this Feature Article, we introduce the mathematical framework of diabatic representations, and we discuss diabatization methods, including adiabatic-to-diabatic transformations and recent progress toward the goal of automatization.

8.
J Chem Theory Comput ; 18(3): 1320-1328, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35104136

ABSTRACT

Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.

9.
J Chem Phys ; 154(9): 094310, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33685154

ABSTRACT

We evaluate the effect of electronic decoherence on intersystem crossing in the photodynamics of thioformaldehyde. First, we show that the state-averaged complete-active-space self-consistent field electronic structure calculations with a properly chosen active space of 12 active electrons in 10 active orbitals can predict the potential energy surfaces and the singlet-triplet spin-orbit couplings quite well for CH2S, and we use this method for direct dynamics by coherent switching with decay of mixing (CSDM). We obtain similar dynamical results with CSDM or by adding energy-based decoherence to trajectory surface hopping, with the population of triplet states tending to a small steady-state value over 500 fs. Without decoherence, the state populations calculated by the conventional trajectory surface hopping method or the semiclassical Ehrenfest method gradually increase. This difference shows that decoherence changes the nature of the results not just quantitatively but qualitatively.

10.
Viruses ; 13(2)2021 01 21.
Article in English | MEDLINE | ID: mdl-33494515

ABSTRACT

Norovirus is the leading cause of acute gastroenteritis worldwide. The pathogenesis of norovirus and the induced immune response remain poorly understood due to the lack of a robust virus culture system. The monolayers of two secretor-positive Chinese human intestinal enteroid (HIE) lines were challenged with two norovirus pandemic GII.4 Sydney strains. Norovirus RNA replication in supernatants and cell lysates were quantified by RT-qPCR. RNA expression levels of immune-related genes were profiled using PCR arrays. The secreted protein levels of shortlisted upregulated genes were measured in supernatants using analyte-specific enzyme-linked immunosorbent assay (ELISA). Productive norovirus replications were achieved in three (75%) out of four inoculations. The two most upregulated immune-related genes were CXCL10 (93-folds) and IFI44L (580-folds). Gene expressions of CXCL10 and IFI44L were positively correlated with the level of norovirus RNA replication (CXCL10: Spearman's r = 0.779, p < 0.05; IFI44L: r = 0.881, p < 0.01). The higher level of secreted CXCL10 and IFI44L proteins confirmed their elevated gene expression. The two genes have been reported to be upregulated in norovirus volunteer challenges and natural human infections by other viruses. Our data suggested that HIE could mimic the innate immune response elicited in natural norovirus infection and, therefore, could serve as an experimental model for future virus-host interaction and antiviral studies.


Subject(s)
Caliciviridae Infections/immunology , Chemokine CXCL10/metabolism , Intestines/virology , Tumor Suppressor Proteins/metabolism , Aged , Aged, 80 and over , Cell Line , Chemokine CXCL10/genetics , Female , Host Microbial Interactions , Humans , Immunity, Innate , Interferons/genetics , Interferons/metabolism , Intestines/immunology , Male , Middle Aged , Models, Biological , Norovirus/pathogenicity , Norovirus/physiology , Organoids/immunology , Organoids/virology , Sequence Analysis, RNA , Tumor Suppressor Proteins/genetics , Virus Replication
11.
Emerg Infect Dis ; 27(1): 289-293, 2021 01.
Article in English | MEDLINE | ID: mdl-33350912

ABSTRACT

We report a new norovirus GII.4 variant, GII.4 Hong Kong, with low-level circulation in 4 Eurasia countries since mid-2017. Amino acid substitutions in key residues on the virus capsid associated with the emergence of pandemic noroviruses suggest that GII.4 Hong Kong has the potential to become the next pandemic variant.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Caliciviridae Infections/epidemiology , Europe/epidemiology , Gastroenteritis/epidemiology , Genotype , Hong Kong/epidemiology , Humans , Norovirus/genetics , Phylogeny
12.
J Chem Theory Comput ; 16(7): 4098-4106, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32456433

ABSTRACT

Electronically nonadiabatic dynamics methods based on a self-consistent potential, such as semiclassical Ehrenfest and coherent switching with decay of mixing, have a number of advantages but are computationally slower than approximations based on an unaveraged potential because they require evaluation of all components of the nonadiabatic coupling vector. Here we introduce a new approximation to the self-consistent potential that does not have this computational drawback. The new approximation uses time-derivative couplings evaluated by overlap integrals of electronic wave functions to approximate the nonadiabatic coupling terms in the equations of motion. We present a numerical test of the method for ethylene that shows there is little loss of accuracy in the ensemble-averaged results. This new approximation to the self-consistent potential makes direct dynamics calculations with self-consistent potentials more efficient for complex systems and makes them practically affordable for some cases where the cost was previously too high.

13.
J Chem Theory Comput ; 16(6): 3464-3475, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32250624

ABSTRACT

Simulation of electronically nonadiabatic dynamics is an important tool for understanding the mechanisms of photochemical and photophysical processes. Two contrasting methods in which the electrons are treated quantum mechanically while the nuclei are treated classically are semiclassical Ehrenfest dynamics and trajectory surface hopping; neither method in its original form includes decoherence. Decoherence in the context of electronically nonadiabatic dynamics refers to the gradual collapse of a coherent quantum mechanical electronic state under the scrutiny of nuclear motion into a mixture of stable pointer states. This is modeled in the coherent switches with decay of mixing (CSDM) method by the decay of the off-diagonal elements of the electronic density matrix. Here, we present an implementation of CSDM in the SHARC program; a key element of the new implementation is the use of a different propagator than that used previously in the ANT program.

14.
Proc Natl Acad Sci U S A ; 117(11): 5610-5616, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32123079

ABSTRACT

Barrierless unimolecular association reactions are prominent in atmospheric and combustion mechanisms but are challenging for both experiment and kinetics theory. A key datum for understanding the pressure dependence of association and dissociation reactions is the high-pressure limit, but this is often available experimentally only by extrapolation. Here we calculate the high-pressure limit for the addition of a chlorine atom to acetylene molecule (Cl + C2H2→C2H2Cl). This reaction has outer and inner transition states in series; the outer transition state is barrierless, and it is necessary to use different theoretical frameworks to treat the two kinds of transition state. Here we study the reaction in the high-pressure limit using multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) at the outer transition state and reaction-path variational transition state theory (RP-VTST) at the inner turning point; then we combine the results with the canonical unified statistical (CUS) theory. The calculations are based on a density functional validated against the W3X-L method, which is based on coupled cluster theory with single, double, and triple excitations and a quasiperturbative treatment of connected quadruple excitations [CCSDT(Q)], and the computed rate constants are in good agreement with some of the experimental results. The chlorovinyl (C2H2Cl) adduct has two isomers that are equilibrium structures of a double-well C≡C-H bending potential. Two procedures are used to calculate the vibrational partition function of chlorovinyl; one treats the two isomers separately and the other solves the anharmonic energy levels of the double well. We use these results to calculate the standard-state free energy and equilibrium constant of the reaction.

15.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31948964

ABSTRACT

We report the nearly complete genome of a norovirus GII.4 Hong Kong[P31] variant (GII strain Hu/HK/2019/GII.4 Hong Kong[P31]/CUHK-NS-2200) that was detected in a patient with gastroenteritis in August 2019. The genome was sequenced by metagenomic next-generation sequencing and was found to have 92.8% nucleotide similarity to the closest GII.4 norovirus sequence in GenBank.

16.
J Phys Chem Lett ; 11(3): 1135-1140, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31958368

ABSTRACT

Direct nonadiabatic dynamics is used to study processes involving multiple electronic states from small molecules to materials. Compared with dynamics with fitted analytical potential energy surfaces, direct dynamics is more user-friendly in that it obtains all needed energies, gradients, and nonadiabatic couplings (NACs) by electronic structure calculations. However, the NAC that is usually used does not conserve angular momentum or the center of mass in widely used mixed quantum-classical nonadiabatic dynamics algorithms, in particular, trajectory surface hopping, semiclassical Ehrenfest, and coherent switching with decay of mixing. We show that by using a projection operator to remove the translational and rotational components of the originally computed NAC, one can restore the conservation.

17.
J Chem Phys ; 151(15): 154306, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640376

ABSTRACT

An analytic full-dimensional diabatic potential energy matrix (DPEM) for the lowest three singlet states of thiophenol (C6H5SH) at geometries accessible during photodissociation is constructed using the anchor points reactive potential (APRP) scheme. The data set used for modeling is obtained from electronic structure calculations including dynamic correlation via excitations into the virtual space of a three-state multiconfiguration self-consistent field calculation. The resulting DPEM is a function of all the internal coordinates of thiophenol. The DPEM as a function of the S-H bond stretch and C-C-S-H torsion and the diabatic couplings along two in-plane bend modes and nine out-of-plane distortion modes are computed using extended multiconfigurational quasidegenerate perturbation theory followed by the fourfold way determination of diabatic molecular orbitals and model space diabatization by configurational uniformity, and this dependence of the DPEM is represented by general functional forms. Potentials along 31 tertiary internal degrees of freedom are modeled with system-dependent, primary-coordinate-dependent nonreactive molecular mechanics-type force fields that are parameterized by Cartesian Hessians calculated by generalized Kohn-Sham density functional theory. Adiabatic potential energy surfaces (PESs) and nonadiabatic couplings are obtained by a transformation of the DPEM. The topography of the APRP PESs is characterized by vertical excitation energies, equilibrium geometries, vibrational frequencies, and conical intersections, and we find good agreement with available reference data. This analytic DPEM is suitable for full-dimensional electronically nonadiabatic molecular dynamics calculations of the photodissociation of thiophenol with analytic gradients in either the adiabatic or diabatic representation.

18.
J Chem Phys ; 151(10): 104311, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521070

ABSTRACT

We have employed extended multiconfiguration quasidegenerate perturbation theory, fourfold-way diabatic molecular orbitals, and configurational uniformity to develop a global three-state diabatic representation of the potential energy surfaces and their couplings for the electronically nonadiabatic reaction OH* + H2 → H2O + H, where * denotes electronic excitation to the A 2Σ+ state. To achieve sign consistency of the computed diabatic couplings, we developed a graphics processing unit-accelerated algorithm called the cluster-growing algorithm. Having obtained consistent signs of the diabatic couplings, we fit the diabatic matrix elements (which consist of the diabatic potentials and the diabatic couplings) to analytic representations. Adiabatic potential energy surfaces are generated by diagonalizing the 3 × 3 diabatic potential energy matrix. The comparisons between the fitted and computed diabatic matrix elements and between the originally computed adiabatic potential energy surfaces and those generated from the fits indicate that the current fit is accurate enough for dynamical studies, and it may be used for quantal or semiclassical dynamics calculations.

19.
Phys Chem Chem Phys ; 21(15): 8179, 2019 04 21.
Article in English | MEDLINE | ID: mdl-30919862

ABSTRACT

Correction for 'Electronic spectrum and characterization of diabatic potential energy surfaces for thiophenol' by Linyao Zhang et al., Phys. Chem. Chem. Phys., 2018, 20, 28144-28154.

20.
Bioresour Technol ; 279: 243-251, 2019 May.
Article in English | MEDLINE | ID: mdl-30735934

ABSTRACT

The gasification reactivity of coal and corn stalks co-pyrolyzed char is studied using thermogravimetric analysis, and the influence of co-pyrolysis on co-gasification reactivity is quantitatively characterized by synergy index. The results demonstrate that with increasing the pyrolysis temperature, the gasification reactivity of coal char gradually decreases, however, the gasification reactivity of CS char does not change monotonically. Furthermore, inhibition effect on co-gasification reactivity of 75% CS co-pyrolyzed char and se-pyrolyzed mixed char is shown at early stage of co-gasification and it gradually becomes synergistic effect as the co-gasification process progresses. However, the effect of the interaction of coal and CS in co-pyrolysis process on co-gasification reactivity is more important than that of the interaction of coal char and CS char in the co-gasification process. Finally, the optimal co-pyrolysis condition for obtaining highly reactivity char is that the ratio of CS in blend exceeds 70% at the pyrolysis temperature about 600 °C.


Subject(s)
Coal , Zea mays/chemistry , Hot Temperature , Pyrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...