Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003064

ABSTRACT

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Subject(s)
Copper , Peroxides , Water Pollutants, Chemical , Copper/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Catalysis , Iron/chemistry , Rhodamines/chemistry , Oxidation-Reduction
2.
BMC Public Health ; 24(1): 1929, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026258

ABSTRACT

BACKGROUND: Many personnel respond to natural disasters like earthquakes and tsunamis and frequent public health events like Ebola and COVID-19. However, research on emergency assistance personnel remains limited. This study aims to describe the perceived well-being among responders deployed in isolated or emergency international missions while providing practical references to intervene in developing similar missions. METHODS: For this qualitative phenomenological study, purposive sampling was used following the principle of maximum differentiation to select personnel deployed on an emergency mission for over a year. Data collection continued until data saturation. Phenomenologically semi-structured interviews helped explore the physical and psychological status of the participants with Colaizzi's method. RESULTS: Eleven personnel were interviewed after the mission, with four major themes being identified: 'perceived somatic change,' 'perceived emotional change,' 'behavioral change,' and 'coping with perceived change.' CONCLUSIONS: The mental health status of the emergency assistance personnel was affected by multiple factors from external and internal environments. The current study explored the physical and psychological feelings and emotions of emergency assistance personnel during an emergency mission. The study provided a practical reference for health management under similar missions. REGISTRATIONS: Not registered.


Subject(s)
COVID-19 , Emergency Responders , Qualitative Research , Humans , Male , Female , Adult , Emergency Responders/psychology , Emergency Responders/statistics & numerical data , COVID-19/psychology , COVID-19/epidemiology , Adaptation, Psychological , Middle Aged , Health Status , Public Health , Mental Health , Interviews as Topic
3.
Front Cardiovasc Med ; 11: 1410594, 2024.
Article in English | MEDLINE | ID: mdl-39006165

ABSTRACT

Transesophageal Echocardiography (TEE) is an important imaging method for the evaluation of cardiac structure and function, and it holds significant value in the clinical management of cardiovascular diseases. Unlike transthoracic echocardiography (TTE), which is non-invasive, TEE involves semi-invasive intracavity operations, leading to increasing attention to its safety and potential complications. Especially with the increasing demand for TEE applications in clinical practice and the rapid growth in the number of facilities utilizing it, the standardized application and safe operation of TEE technology have become particularly crucial. This article will review the literature and draw upon personal experience to analyze the complications and safety of TEE examinations from a technical perspective.

4.
Echocardiography ; 41(2): e15771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38353471

ABSTRACT

BACKGROUND: Pediatric heart transplant (HT) has become the standard of care for end-stage heart failure in children worldwide. Serial echocardiographic evaluations of graft anatomy and function during follow-up are crucial for post-HT management. However, evolution of cardiac structure and function after pediatric HT has not been well described, especially during first year post-HT. This study aimed to characterize the evolution of cardiac structure and function after pediatric HT and investigate the correlation between biventricular function with adverse clinical outcomes. METHODS: A single-center retrospective study of echocardiographic data obtained among 99 pediatric HT patients was conducted. Comprehensive echocardiographic examination was performed in all patients at 1-, 3-, 6-, 9- and 12-months post-HT. We obtained structural, functional and hemodynamic parameters from both left- and right-side heart, such as left ventricular stroke volume (LVSV), left ventricular ejection fraction (LVEF), right ventricular fractional area change (RVFAC), etc. The cardiac evolution of pediatric HT patients during first post-HT year was described and compared between different time points. We also explored the correlation between cardiac function and major adverse transplant events (MATEs). RESULTS: 1) Evolution of left heart parameters: left atrial length, mitral E velocity, E/A ratio, LVSV and LVEF significantly increased while mitral A velocity significantly decreased over the first year after HT (P < .05). Compared with 1 month after HT, interventricular septum (IVS) and left ventricular posterior wall (LVPW) decreased at 3 months but increased afterwards. (2) Evolution of right heart parameters: right ventricular base diameter and mid-diameter; right ventricular length diameter, tricuspid E velocity, E/A ratio, tricuspid annular velocity e' at free wall, and RVFAC increased, while tricuspid A velocity decreased over the first year after HT (P < .05). (3) Univariate logistic regression model suggests that biventricular function parameters at 1-year post-HT (LVEF, RVFAC, tricuspid annular plane systolic excursion and tricuspid lateral annular systolic velocity) were associated with MATEs. CONCLUSION: Gradual improvement of LV and RV function was seen in pediatric HT patients within the first year. Biventricular function parameters associated with MATEs. The results of this study pave way for designing larger and longer follow-up of this population, potentially aiming at using multiparameter echocardiographic prediction of adverse events.


Subject(s)
Heart Transplantation , Ventricular Dysfunction, Right , Humans , Child , Stroke Volume , Retrospective Studies , Ventricular Function, Left , Echocardiography/methods , Heart Transplantation/adverse effects , Ventricular Function, Right
5.
mSystems ; 8(4): e0129122, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37345941

ABSTRACT

Acinetobacter baumannii has become one of the most challenging pathogens in many countries with limited treatment options available. Cefiderocol, a novel siderophore-conjugated cephalosporin, shows potent in vitro activity against A. baumannii, including isolates resistant to carbapenems. To date, few reports on the mechanisms of cefiderocol resistance are available. In order to investigate potential mechanisms of cefiderocol resistance in A. baumannii, we performed in vitro evolution experiments at sub-lethal concentrations of the antibiotic. All four cefiderocol-resistant strains obtained harbored mutations in two-component system BaeS-BaeR. When we engineered the mutations of BaeS (D89V) and BaeR (S104N) into the genome of ATCC 17978, these mutations increased cefiderocol minimum inhibitory concentrations (MICs) by 8-fold to 16-fold. Transcriptome analyses showed that the expression of MacAB-TolC and MFS transporters was up-regulated in BaeSR mutants. Strains over-expressing MFS transporter and MacAB-TolC displayed higher MICs and higher median inhibition concentration (IC50) values, while MICs and IC50 decreased when efflux pump genes were knocked out. In a BaeR mutant with up-regulated csu operon, we observed a higher number of pili, enhanced surface motility, and increased biofilm formation compared to wild-type ATCC 17978. Using the Galleria mellonella infection model, we found that the BaeS mutant in which paa operon was up-regulated exhibited increased virulence. In conclusion, the mutations in BaeSR decreased cefiderocol susceptibility of A. baumannii through up-regulating efflux pumps gene expression. BaeS or BaeR also controls the expression of csu and paa, influencing biofilm formation, surface motility, and virulence in A. baumannii. IMPORTANCE The widespread prevalence of multi-drug-resistant A. baumannii (MDRAB) poses a significant therapeutic challenge. Cefiderocol is considered a promising antibiotic for the treatment of MDRAB infections. Therefore, it is necessary to study the potential resistance mechanisms of cefiderocol to delay the development of bacterial resistance. Here, we demonstrated that mutations in baeS and baeR reduced the susceptibility of A. baumannii to cefiderocol by up-regulating the expression of the MFS family efflux pump and MacAB-TolC efflux pump. We propose that BaeS mutants increase bacterial virulence by up-regulating the expression of the paa operon. This also reports the regulatory effect of BaeSR on csu operon for the first time. This study provides further insights into the role of BaeSR in developing cefiderocol resistance and virulence in A. baumannii.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Membrane Transport Proteins/genetics , Mutation , Cefiderocol
6.
Environ Sci Pollut Res Int ; 30(13): 35781-35807, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36536200

ABSTRACT

Short-term wind speed forecasting is fundamental to improving the stability of power grid operation and enhancing its transmission efficiency; thus, it has long been a research hotspot. Nonetheless, quantities of literature in this field only used the single prediction model and overemphasized deterministic prediction, which resulted in deficient forecasting performance. To address these issues, a novel point and interval combination prediction system was developed in this paper. Specifically, wind speed time series were reconstructed by dividing windows and fuzzification to input highly effective data; next, four single prediction models and a multi-objective weight-determining mechanism were integrated to obtain the point prediction results; and their distributions were assessed to implement interval prediction under distinct confidence levels. In the meantime, this study demonstrated that the proposed system reached the Pareto optimal by the theoretical proof, and empirical research was conducted based on 10-min real wind speed data from the wind farm in China. Judging from the experimental results, the combination prediction system was always capable of providing the most satisfactory forecasting performance by contrast with the comparative models. Consequently, it has broad application prospects in guiding the operation of wind farms and optimizing the power grid dispatching.


Subject(s)
Energy-Generating Resources , Wind , Algorithms , China , Forecasting
7.
J Environ Manage ; 324: 116282, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36191506

ABSTRACT

The prediction of air pollution plays an important role in reducing the emission of air pollutants and guiding people to carry out early warning and control, so it attracts many scholars to conduct modeling and research on it. However, most of the current researches fail to quantify the uncertainty in prediction and only use traditional fuzzy information granulation to process data, resulting in the loss of much detail information. Therefore, this paper proposes a hybrid model based on decomposition and granular fuzzy information to solve these problems. The trend item and the Granulation fluctuation item are respectively predicted and the results are combined to obtain the change trend and fluctuation range of the sequence. This paper selects PM2.5 concentrations of 3 cities. The experimental results show that the evaluation index of the prediction model is significantly lower than other benchmark models, and a variety of statistical methods are used to further verify the effectiveness of the prediction model.


Subject(s)
Air Pollutants , Air Pollution , Humans , Uncertainty , Environmental Monitoring/methods , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis
8.
Nat Commun ; 13(1): 5021, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028482

ABSTRACT

Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.


Subject(s)
NADH, NADPH Oxidoreductases , NAD , Escherichia coli , NADP , Oxidation-Reduction
9.
Evol Appl ; 15(7): 1045-1061, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899254

ABSTRACT

OXA-23 is the predominant carbapenemase in carbapenem-resistant Acinetobacter baumannii. The co-evolutionary dynamics of A. baumannii and OXA-23-encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla OXA-23-containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub-inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla OXA-23 in pAZJ221, interfering allele dynamics, and chromosomal locus-level parallelism were observed. To characterize genotype-to-phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3' → 5') GMP-metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla OXA-23 was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla OXA-23 increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic-free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co-evolution of A. baumannii and a clinical bla OXA-23-containing plasmid in the presence of imipenem, involving early bla OXA-23 duplication followed by chromosomal adaptations that improved the fitness of plasmid-carrying cells.

10.
ACS Catal ; 12(14): 8582-8592, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-37622090

ABSTRACT

Noncanonical cofactors such as nicotinamide mononucleotide (NMN+) supplant the electron-transfer functionality of the natural cofactors, NAD(P)+, at a lower cost in cell-free biomanufacturing and enable orthogonal electron delivery in whole-cell metabolic engineering. Here, we redesign the high-flux Embden-Meyerhof-Parnas (EMP) glycolytic pathway to generate NMN+-based reducing power, by engineering Streptococcus mutans glyceraldehyde-3-phosphate dehydrogenase (Sm GapN) to utilize NMN+. Through iterative rounds of rational design, we discover the variant GapN Penta (P179K-F153S-S330R-I234E-G210Q) with high NMN+-dependent activity and GapN Ortho (P179K-F153S-S330R-I234E-G214E) with ~3.4 × 106-fold switch in cofactor specificity from its native cofactor NADP+ to NMN+. GapN Ortho is further demonstrated to function in Escherichia coli only in the presence of NMN+, enabling orthogonal control of glucose utilization. Molecular dynamics simulation and residue network connectivity analysis indicate that mutations altering cofactor specificity must be coordinated to maintain the appropriate degree of backbone flexibility to position the catalytic cysteine. These results provide a strategy to guide future designs of NMN+-dependent enzymes and establish the initial steps toward an orthogonal EMP pathway with biomanufacturing potential.

11.
Microb Genom ; 7(9)2021 09.
Article in English | MEDLINE | ID: mdl-34554083

ABSTRACT

Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results.


Subject(s)
Clavulanic Acid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Penicillins/pharmacology , Algorithms , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genotype , Machine Learning , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Staphylococcus aureus/genetics
12.
ACS Synth Biol ; 10(9): 2359-2370, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34469126

ABSTRACT

Cyclohexanone monooxygenases (CHMO) consume molecular oxygen and NADPH to catalyze the valuable oxidation of cyclic ketones. However, CHMO usage is restricted by poor stability and stringent specificity for NADPH. Efforts to engineer CHMO have been limited by the sensitivity of the enzyme to perturbations in conformational dynamics and long-range interactions that cannot be predicted. We demonstrate an aerobic, high-throughput growth selection platform in Escherichia coli for oxygenase evolution based on NADH redox balance. We applied this NADH-dependent selection to alter the cofactor specificity of CHMO to accept NADH, a less expensive cofactor than NADPH. We first identified the variant CHMO DTNP (S208D-K326T-K349N-L143P) with a ∼1200-fold relative cofactor specificity switch from NADPH to NADH compared to the wild type through semirational design. Molecular modeling suggests CHMO DTNP activity is driven by cooperative fine-tuning of cofactor contacts. Additional evolution of CHMO DTNP through random mutagenesis yielded the variant CHMO DTNPY with a ∼2900-fold relative specificity switch compared to the wild type afforded by an additional distal mutation, H163Y. These results highlight the difficulty in engineering functionally innovative variants from static models and rational designs, and the need for high throughput selection methods. Our introduced tools for oxygenase engineering accelerate the advancements of characteristics essential for industrial feasibility.


Subject(s)
Escherichia coli Proteins/metabolism , NAD/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Biocatalysis , Directed Molecular Evolution , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , High-Throughput Screening Assays/methods , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , NAD/chemistry , Oxidation-Reduction , Oxygen/chemistry , Oxygenases/genetics
13.
Emerg Microbes Infect ; 10(1): 1404-1417, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34170209

ABSTRACT

Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , RNA, Ribosomal, 5S/genetics , Tigecycline/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Mutation , RNA, Ribosomal, 5S/metabolism
14.
Microb Cell Fact ; 19(1): 150, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32718347

ABSTRACT

BACKGROUND: Noncanonical redox cofactors are emerging as important tools in cell-free biosynthesis to increase the economic viability, to enable exquisite control, and to expand the range of chemistries accessible. However, these noncanonical redox cofactors need to be biologically synthesized to achieve full integration with renewable biomanufacturing processes. RESULTS: In this work, we engineered Escherichia coli cells to biosynthesize the noncanonical cofactor nicotinamide mononucleotide (NMN+), which has been efficiently used in cell-free biosynthesis. First, we developed a growth-based screening platform to identify effective NMN+ biosynthetic pathways in E. coli. Second, we explored various pathway combinations and host gene disruption to achieve an intracellular level of ~ 1.5 mM NMN+, a 130-fold increase over the cell's basal level, in the best strain, which features a previously uncharacterized nicotinamide phosphoribosyltransferase (NadV) from Ralstonia solanacearum. Last, we revealed mechanisms through which NMN+ accumulation impacts E. coli cell fitness, which sheds light on future work aiming to improve the production of this noncanonical redox cofactor. CONCLUSION: These results further the understanding of effective production and integration of NMN+ into E. coli. This may enable the implementation of NMN+-directed biocatalysis without the need for exogenous cofactor supply.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , NAD/biosynthesis , Nicotinamide Mononucleotide/biosynthesis , Biocatalysis , Biosynthetic Pathways , DNA, Bacterial/genetics , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Industrial Microbiology , Metabolic Engineering , Mutation , Oxidation-Reduction
15.
Front Microbiol ; 11: 1134, 2020.
Article in English | MEDLINE | ID: mdl-32582088

ABSTRACT

Acinetobacter pittii is increasingly recognized as a clinically important species. Here, we identified a carbapenem-non-resistant A. pittii clinical isolate, A1254, harboring bla OXA- 499, bla OXA- 826, and bla ADC- 221. The bla OXA- 499 genetic environment in A1254 was identical to that of another OXA-499-producing, but carbapenem-resistant, A. pittii isolate, YMC2010/8/T346, indicating the existence of phenotypic variation among OXA-499-producing A. pittii strains. Under imipenem-selective pressure, the A1254 isolate developed resistance to carbapenems in 60 generations. Two carbapenem-resistant mutants (CAB009 and CAB010) with mutations in the bla OXA- 499 promoter region were isolated from two independently evolved populations (CAB001 and CAB004). The CAB009 mutant, with a mutation at position -14 (A to G), exhibited a four-fold higher carbapenem minimum inhibitory concentration (MIC) and a 4.53 ± 0.19 log2 fold change higher expression level of bla OXA- 499 than the ancestor strain, A1254. The other mutant, CAB010, with a mutation at position -42 (G to A), showed a two-fold higher carbapenem MIC and a 1.65 ± 0.25 log2 fold change higher bla OXA- 499 expression level than the ancestor strain. The bla OXA- 499 gene and its promoter region were amplified from the wild-type strain and two mutant isolates and then individually cloned into the pYMAb2-Hyg r vector and expressed in Acinetobacter baumannii ATCC 17978, A. pittii LMG 1035, and A. pittii A1254. All the transformed strains were resistant to carbapenem, irrespective of whether they harbored the initial or an evolved promoter sequence, and transformed strains expressing the promoter from the most resistant mutant, CAB009, showed the highest carbapenem MICs, with values of 32-64 µg/ml for imipenem and 128 µg/ml for meropenem. RNA sequencing was performed to confirm the contribution of bla OXA- 499 to the development of carbapenem resistance. Although the CAB009 and CAB010 transcriptional patterns were different, bla OXA- 499 was the only differentially expressed gene shared by the two mutants. Our results indicate that carbapenem-non-resistant Acinetobacter spp. strains carrying bla OXA genes have the potential to develop carbapenem resistance and need to be further investigated and monitored to prevent treatment failure due to the development of resistance.

16.
Emerg Microbes Infect ; 9(1): 1206-1218, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32438864

ABSTRACT

The incidence and transmission of Klebsiella pneumoniae carbapenemase (KPC) producing plasmids have been well documented. However, the evolutionary dynamics of KPC plasmids and their fitness costs are not well characterized. Here, two carbapenemase-producing plasmids from Proteus mirabilis, pT18 and pT211 (both carrying bla KPC-2), were characterized through whole genome sequencing. pT211 is a 24.2 kbp N-type plasmid that contains bla KPC-2 and a single copy of the IS6-family insertion sequence IS26. pT18 is a 59 kbp cointegrate plasmid comprised of sequences derived from three different plasmids: a close relative of pT211 (containing bla KPC-2), an FII-33 plasmid (bla TEM-1B, bla CTX-M-65, rmtB and fosA3) and a rolling-circle plasmid. The segments of pT18 derived from each of the different plasmids are separated by copies of IS26, and sequence analysis indicated that pT18 was likely generated by both conservative and replicative IS26-mediated cointegrate formation. pT18 and pT211 were transferred into Escherichia coli DH5α separately to assess the impact of plasmids on host fitness. Only DH5α harbouring pT18 grew slower than the wild type in antibiotic-free media. However, in sub-inhibitory concentrations of fosfomycin and amikacin, cells containing pT18 grew faster than the wild type, and the minimum concentrations of fosfomycin and amikacin required to observe an advantage for plasmid-carrying cells were 1/3 and 1/20 the DH5α MIC, respectively. This study highlights the importance of the role of cointegrate plasmids in the dissemination of antibiotic resistance genes between pathogenic bacterial species, and highlights the importance of sub-inhibitory concentrations of antibiotics to the persistence of such plasmids.


Subject(s)
Bacterial Proteins/genetics , Plasmids/genetics , Proteus mirabilis/genetics , Whole Genome Sequencing/methods , beta-Lactamases/genetics , Amikacin/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Evolution, Molecular , Female , Fosfomycin/pharmacology , Genetic Fitness , Genome Size , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Proteus mirabilis/isolation & purification , Sputum/microbiology , beta-Lactamases/metabolism
18.
BMC Microbiol ; 20(1): 40, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111158

ABSTRACT

BACKGROUND: Acinetobacter baylyi ADP1 is an ideal bacterial strain for high-throughput genetic analysis as the bacterium is naturally transformable. Thus, ADP1 can be used to investigate DNA mismatch repair, a mechanism for repairing mismatched bases. We used the mutS deletion mutant (XH439) and mutL deletion mutant (XH440), and constructed a mutS mutL double deletion mutant (XH441) to investigate the role of the mismatch repair system in A. baylyi. RESULTS: We determined the survival rates after UV irradiation and measured the mutation frequencies, rates and spectra of wild-type ADP1 and mutSL mutant via rifampin resistance assay (RifR assay) and experimental evolution. In addition, transformation efficiencies of genomic DNA in ADP1 and its three mutants were determined. Lastly, the relative growth rates of the wild type strain, three constructed deletion mutants, as well as the rifampin resistant mutants obtained from RifR assays, were measured. All three mutants had higher survival rates after UV irradiation than wild type, especially the double deletion mutant. Three mutants showed higher mutation frequencies than ADP1 and favored transition mutations in RifR assay. All three mutants showed increased mutation rates in the experimental evolution. However, only XH439 and XH441 had higher mutation rates than the wild type strain in RifR assay. XH441 showed higher transformation efficiency than XH438 when donor DNA harbored transition mutations. All three mutants showed higher growth rates than wild-type, and these four strains displayed higher growth rates than almost all their rpoB mutants. The growth rate results showed different amino acid mutations in rpoB resulted in different extents of reduction in the fitness of rifampin resistant mutants. However, the fitness cost brought by the same mutation did not vary with strain background. CONCLUSIONS: We demonstrated that inactivation of both mutS and mutL increased the mutation rates and frequencies in A. baylyi, which would contribute to the evolution and acquirement of rifampicin resistance. The mutS deletion is also implicated in increased mutation rates and frequencies, suggesting that MutL may be activated even in the absence of mutS. The correlation between fitness cost and rifampin resistance mutations in A. baylyi is firstly established.


Subject(s)
Acinetobacter/growth & development , MutL Proteins/genetics , MutS DNA Mismatch-Binding Protein/genetics , Mutation Rate , Acinetobacter/drug effects , Acinetobacter/genetics , Acinetobacter/radiation effects , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Evolution, Molecular , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Genetic Fitness , Microbial Viability/radiation effects , Rifampin/pharmacology
19.
Infect Genet Evol ; 80: 104185, 2020 06.
Article in English | MEDLINE | ID: mdl-31923725

ABSTRACT

Acinetobacter baumannii is an important pathogen and presents a major burden in healthcare as strains frequently cause hospital associated opportunistic infections with high mortality rates. Due to increasing numbers of drug resistant A. baumannii strains, newly developed antibiotics are being used to treat infections caused by such strains. One novel synthetic antibiotic of the tetracycline class with activity against A. baumannii is eravacycline. To investigate possible mechanisms of eravacycline resistance, we performed an in vitro evolution experiment to select for an eravacycline resistant strain, with the clinical isolate MDR-ZJ06 as parental strain. We obtained a strain designated MDR-ZJ06-E6 that was able to grow in 64-fold MIC. Genomic mutations were identified by whole genome sequencing, where we found a deletion mutation in the gene adeS. Using complementation experiments, including growth rate determination and antibiotics susceptibility testing, we could confirm that this mutation was responsible for eravacycline resistance of strain MDR-ZJ06-E6. As a mechanism of resistance, we identified a significant overexpression of the efflux pump AdeABC which seems to be regulated by the mutation in adeS in A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Membrane Transport Proteins/genetics , Sequence Deletion , Tetracyclines/pharmacology , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Plasmids/genetics
20.
ACS Catal ; 10(12): 6969-6974, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-34295569

ABSTRACT

We report an aerobic, growth-based selection platform founded on NADP(H) redox balance restoration in Escherichia coli, and we demonstrate its application in the high-throughput evolution of an oxygenase. A single round of selection followed by a facile growth assay enabled Pseudomonas aeruginosa 4-hydroxybenzoate hydroxylase (PobA) to efficiently hydroxylate both 4-hydroxybenzoic acid (4-HBA) and 3,4-dihydroxybenzoic acid (3,4-DHBA), two consecutive steps in gallic acid biosynthesis. Structural modeling suggests precise reorganization of active site hydrogen bond network, which is difficult to obtain without deep navigation of combinatorial sequence space. We envision universal application of this selection platform in engineering NADPH-dependent oxidoreductases.

SELECTION OF CITATIONS
SEARCH DETAIL
...