Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
2.
Mol Ther Oncolytics ; 27: 288-304, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36458202

ABSTRACT

Antigen heterogeneity that results in tumor antigenic escape is one of the major obstacles to successful chimeric antigen receptor (CAR) T cell therapies in solid tumors including glioblastoma multiforme (GBM). To address this issue and improve the efficacy of CAR T cell therapy for GBM, we developed an approach that combines CAR T cells with inhibitor of apoptosis protein (IAP) antagonists, a new class of small molecules that mediate the degradation of IAPs, to treat GBM. Here, we demonstrated that the IAP antagonist birinapant could sensitize GBM cell lines and patient-derived primary GBM organoids to apoptosis induced by CAR T cell-derived cytokines, such as tumor necrosis factor. Therefore, birinapant could enhance CAR T cell-mediated bystander death of antigen-negative GBM cells, thus preventing tumor antigenic escape in antigen-heterogeneous tumor models in vitro and in vivo. In addition, birinapant could promote the activation of NF-κB signaling pathways in antigen-stimulated CAR T cells, and with a birinapant-resistant tumor model we showed that birinapant had no deleterious effect on CAR T cell functions in vitro and in vivo. Overall, we demonstrated the potential of combining the IAP antagonist birinapant with CAR T cells as a novel and feasible approach to overcoming tumor antigen heterogeneity and enhancing CAR T cell therapy for GBM.

3.
Mol Ther ; 30(7): 2537-2553, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35570396

ABSTRACT

Bispecific T cell engagers (BiTEs) are bispecific antibodies that redirect T cells to target antigen-expressing tumors. We hypothesized that BiTE-secreting T cells could be a valuable therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) T cells. Glioblastomas represent a good model for solid tumor heterogeneity, representing a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III, and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the single chain variable fragments to generate new BiTE molecules. Compared with CAR T cells, BiTE T cells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE-secreting bivalent T cells compared with bivalent CAR T cells in a glioma mouse model at early phase, but not in the long term. In summary, BiTEs secreted by mono- or multi-valent T cells have potent anti-tumor activity in vitro and in vivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Animals , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/pathology , Immunotherapy, Adoptive , Mice , T-Lymphocytes , Xenograft Model Antitumor Assays
4.
Cancer Immunol Res ; 10(7): 800-810, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35507919

ABSTRACT

Glioblastoma (GBM) is an immunologically "cold" tumor characterized by poor responsiveness to immunotherapy. Standard of care for GBM is surgical resection followed by chemoradiotherapy and maintenance chemotherapy. However, tumor recurrence is the norm, and recurring tumors are found frequently to have acquired molecular changes (e.g., mutations) that may influence their immunobiology. Here, we compared the immune contexture of de novo GBM and recurrent GBM (rGBM) using high-dimensional cytometry and multiplex IHC. Although myeloid and T cells were similarly abundant in de novo and rGBM, their spatial organization within tumors differed and was linked to outcomes. In rGBM, T cells were enriched and activated in perivascular regions and clustered with activated macrophages and fewer regulatory T cells. Moreover, a higher expression of phosphorylated STAT1 by T cells in these regions at recurrence was associated with a favorable prognosis. Together, our data identify differences in the immunobiology of de novo GBM and rGBM and identify perivascular T cells as potential therapeutic targets. See related Spotlight by Bayik et al., p. 787.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Chemoradiotherapy , Glioblastoma/genetics , Humans , Neoplasm Recurrence, Local/pathology , Prognosis
5.
Front Oncol ; 11: 664236, 2021.
Article in English | MEDLINE | ID: mdl-34568006

ABSTRACT

Tumor heterogeneity is a key reason for therapeutic failure and tumor recurrence in glioblastoma (GBM). Our chimeric antigen receptor (CAR) T cell (2173 CAR T cells) clinical trial (NCT02209376) against epidermal growth factor receptor (EGFR) variant III (EGFRvIII) demonstrated successful trafficking of T cells across the blood-brain barrier into GBM active tumor sites. However, CAR T cell infiltration was associated only with a selective loss of EGFRvIII+ tumor, demonstrating little to no effect on EGFRvIII- tumor cells. Post-CAR T-treated tumor specimens showed continued presence of EGFR amplification and oncogenic EGFR extracellular domain (ECD) missense mutations, despite loss of EGFRvIII. To address tumor escape, we generated an EGFR-specific CAR by fusing monoclonal antibody (mAb) 806 to a 4-1BB co-stimulatory domain. The resulting construct was compared to 2173 CAR T cells in GBM, using in vitro and in vivo models. 806 CAR T cells specifically lysed tumor cells and secreted cytokines in response to amplified EGFR, EGFRvIII, and EGFR-ECD mutations in U87MG cells, GBM neurosphere-derived cell lines, and patient-derived GBM organoids. 806 CAR T cells did not lyse fetal brain astrocytes or primary keratinocytes to a significant degree. They also exhibited superior antitumor activity in vivo when compared to 2173 CAR T cells. The broad specificity of 806 CAR T cells to EGFR alterations gives us the potential to target multiple clones within a tumor and reduce opportunities for tumor escape via antigen loss.

6.
Magn Reson Med ; 86(4): 2208-2219, 2021 10.
Article in English | MEDLINE | ID: mdl-34009682

ABSTRACT

PURPOSE: Previously, multi- post-labeling delays (PLD) pseudo-continuous arterial spin labeling (pCASL) protocols have been optimized for the estimation accuracy of the cerebral blood flow (CBF) with/without the arterial transit time (ATT) under a standard kinetic model and a normal ATT range. This study aims to examine the estimation errors of these protocols under the effects of macrovascular contamination, flow dispersion, and prolonged arrival times, all of which might differ substantially in elderly or pathological groups. METHODS: Simulated data for four protocols with varying degrees of arterial blood volume (aBV), flow dispersion, and ATTs were fitted with different kinetic models, both with and without explicit correction for macrovascular signal contamination (MVC), to obtain CBF and ATT estimates. Sensitivity to MVC was defined and calculated when aBV > 0.5%. A previously acquired dataset was retrospectively analyzed to compare with simulation. RESULTS: All protocols showed underestimation of CBF and ATT in the prolonged ATT range. With MVC, the protocol optimized for CBF only (CBFopt) had the lowest sensitivity value to MVC, 33.47% and 60.21% error per 1% aBV in simulation and in vivo, respectively, among multi-PLD protocols. All multi-PLD protocols showed a significant decrease in estimation error when an extended kinetic model was used. Increasing flow dispersion at short ATTs caused increasing CBF and ATT overestimation in all protocols. CONCLUSION: CBFopt was the least sensitive protocol to prolonged ATT and MVC for CBF estimation while maintaining reasonably good performance in estimating ATT. Explicitly including a macrovascular component in the kinetic model was shown to be a feasible approach in controlling for MVC.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Aged , Humans , Reproducibility of Results , Retrospective Studies , Spin Labels
7.
Acta Neuropathol Commun ; 7(1): 67, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31039818

ABSTRACT

Meningiomas are the most common primary brain tumor of adults. The majority are benign (WHO grade I), with a mostly indolent course; 20% of them (WHO grade II and III) are, however, considered aggressive and require a more complex management. WHO grade II and III tumors are heterogeneous and, in some cases, can develop from a prior lower grade meningioma, although most arise de novo. Mechanisms leading to progression or implicated in de novo grade II and III tumorigenesis are poorly understood. RNA-seq was used to profile the transcriptome of grade I, II, and III meningiomas and to identify genes that may be involved in progression. Bioinformatic analyses showed that grade I meningiomas that progress to a higher grade are molecularly different from those that do not. As such, we identify GREM2, a regulator of the BMP pathway, and the snoRNAs SNORA46 and SNORA48, as being significantly reduced in meningioma progression. Additionally, our study has identified several novel fusion transcripts that are differentially present in meningiomas, with grade I tumors that did not progress presenting more fusion transcripts than all other tumors. Interestingly, our study also points to a difference in the tumor immune microenvironment that correlates with histopathological grade.


Subject(s)
Disease Progression , Meningeal Neoplasms/genetics , Meningioma/genetics , Transcriptome , Computational Biology , Female , Humans , Male , Meningeal Neoplasms/pathology , Meningioma/pathology , Neoplasm Grading , Neurofibromin 2/genetics , RNA-Seq , Tumor Microenvironment/genetics
8.
Mol Ther Oncolytics ; 11: 20-38, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30306125

ABSTRACT

We generated two humanized interleukin-13 receptor α2 (IL-13Rα2) chimeric antigen receptors (CARs), Hu07BBz and Hu08BBz, that recognized human IL-13Rα2, but not IL-13Rα1. Hu08BBz also recognized canine IL-13Rα2. Both of these CAR T cell constructs demonstrated superior tumor inhibitory effects in a subcutaneous xenograft model of human glioma compared with a humanized EGFRvIII CAR T construct used in a recent phase 1 clinical trial (ClinicalTrials.gov: NCT02209376). The Hu08BBz demonstrated a 75% reduction in orthotopic tumor growth using low-dose CAR T cell infusion. Using combination therapy with immune checkpoint blockade, humanized IL-13Rα2 CAR T cells performed significantly better when combined with CTLA-4 blockade, and humanized EGFRvIII CAR T cells' efficacy was improved by PD-1 and TIM-3 blockade in the same mouse model, which was correlated with the levels of checkpoint molecule expression in co-cultures with the same tumor in vitro. Humanized IL-13Rα2 CAR T cells also demonstrated benefit from a self-secreted anti-CTLA-4 minibody in the same mouse model. In addition to a canine glioma cell line (J3T), canine osteosarcoma lung cancer and leukemia cell lines also express IL-13Rα2 and were recognized by Hu08BBz. Canine IL-13Rα2 CAR T cell was also generated and tested in vitro by co-culture with canine tumor cells and in vivo in an orthotopic model of canine glioma. Based on these results, we are designing a pre-clinical trial to evaluate the safety of canine IL-13Rα2 CAR T cells in dog with spontaneous IL-13Rα2-positive glioma, which will help to inform a human clinical trial design for glioblastoma using humanized scFv-based IL-13Rα2 targeting CAR T cells.

9.
Cancer Cell ; 34(1): 163-177.e7, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29990498

ABSTRACT

We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Brain Neoplasms/genetics , ErbB Receptors/genetics , Glioblastoma/genetics , Magnetic Resonance Imaging , Mutation, Missense , Adolescent , Adult , Aged , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Child , Child, Preschool , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Genetic Predisposition to Disease , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Humans , Image Interpretation, Computer-Assisted , Infant , Infant, Newborn , Machine Learning , Male , Matrix Metalloproteinase 1/metabolism , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Phenotype , Phosphorylation , Predictive Value of Tests , Protein Domains , Retrospective Studies , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Young Adult
10.
J Neurooncol ; 135(3): 487-496, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28852935

ABSTRACT

SHP2 is a cytoplasmic protein tyrosine phosphatase (PTPase) involved in multiple signaling pathways and was the first identified proto-oncogene PTPase. Previous work in glioblastoma (GBM) has demonstrated the role of SHP2 PTPase activity in modulating the oncogenic phenotype of adherent GBM cell lines. Mutations in PTPN11, the gene encoding SHP2, have been identified with increasing frequency in GBM. Given the importance of SHP2 in developing neural stem cells, and the importance of glioma stem cells (GSCs) in GBM oncogenesis, we explored the functional role of SHP2 in GSCs. Using paired differentiated and stem cell primary cultures, we investigated the association of SHP2 expression with the tumor stem cell compartment. Proliferation and soft agar assays were used to demonstrate the functional contribution of SHP2 to cell growth and transformation. SHP2 expression correlated with SOX2 expression in GSC lines and was decreased in differentiated cells. Forced differentiation of GSCs by removal of growth factors, as confirmed by loss of SOX2 expression, also resulted in decreased SHP2 expression. Lentiviral-mediated knockdown of SHP2 inhibited proliferation. Finally, growth in soft-agar was similarly inhibited by loss of SHP2 expression. Our results show that SHP2 function is required for cell growth and transformation of the GSC compartment in GBM.


Subject(s)
Brain Neoplasms/enzymology , Carcinogenesis/metabolism , Cell Proliferation/physiology , Glioma/enzymology , Neoplastic Stem Cells/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Adult , Aged , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Culture Techniques , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/pathology , Humans , Male , Neoplastic Stem Cells/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Mas , SOXB1 Transcription Factors/metabolism , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...