Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 131: 111915, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38522141

ABSTRACT

The aberrant activation of NLRP3 inflammasome contributes to pathogenesis of multiple inflammation-driven human diseases. However, the medications targeting NLRP3 inflammasome are not approved for clinic use to date. Here, we show that ascorbyl palmitate (AP), a lipophilic derivative of ascorbic acid (AA) and a safe food additive, is a potent inhibitor of NLRP3 inflammasome. Compared with AA, AP inhibited the activation of NLRP3 inflammasome with increased potency and specificity. Mechanistically, AP directly scavenged mitochondrial reactive oxygen species (mitoROS) by its antioxidant activity and blocked NLRP3-NEK7 interaction and NLRP3 inflammasome assembly. Moreover, AP showed more significant preventive effects than AA in LPS-induced systemic inflammation, dextran sulfate sodium (DSS)-induced colitis and experimental autoimmune encephalomyelitis (EAE). Thus, our results suggest that AP is a potential therapeutic combating NLRP3-driven diseases.


Subject(s)
Ascorbic Acid/analogs & derivatives , Colitis , Inflammasomes , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Colitis/chemically induced , Colitis/drug therapy , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Inflammation/drug therapy , Mice, Inbred C57BL , Dextran Sulfate
2.
J Biol Chem ; 299(12): 105467, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979913

ABSTRACT

In this study, we integrated machine learning (ML), structure-tissue selectivity-activity-relationship (STAR), and wet lab synthesis/testing to design a gastrointestinal (GI) locally activating JAK inhibitor for ulcerative colitis treatment. The JAK inhibitor achieves site-specific efficacy through high local GI tissue selectivity while minimizing the requirement for JAK isoform specificity to reduce systemic toxicity. We used the ML model (CoGT) to classify whether the designed compounds were inhibitors or noninhibitors. Then we used the regression ML model (MTATFP) to predict their IC50 against related JAK isoforms of predicted JAK inhibitors. The ML model predicted MMT3-72, which was retained in the GI tract, to be a weak JAK1 inhibitor, while MMT3-72-M2, which accumulated in only GI tissues, was predicted to be an inhibitor of JAK1/2 and TYK2. ML docking methods were applied to simulate their docking poses in JAK isoforms. Application of these ML models enabled us to limit our synthetic efforts to MMT3-72 and MMT3-72-M2 for subsequent wet lab testing. The kinase assay confirmed MMT3-72 weakly inhibited JAK1, and MMT3-72-M2 inhibited JAK1/2 and TYK2. We found that MMT3-72 accumulated in the GI lumen, but not in GI tissue or plasma, but released MMT3-72-M2 accumulated in colon tissue with minimal exposure in the plasma. MMT3-72 achieved superior efficacy and reduced p-STAT3 in DSS-induced colitis. Overall, the integration of ML, the structure-tissue selectivity-activity-relationship system, and wet lab synthesis/testing could minimize the effort in the optimization of a JAK inhibitor to treat colitis. This site-specific inhibitor reduces systemic toxicity by minimizing the need for JAK isoform specificity.


Subject(s)
Colitis, Ulcerative , Drug Design , Janus Kinase Inhibitors , Humans , Colitis, Ulcerative/drug therapy , Janus Kinase 1 , Janus Kinase 2 , Janus Kinase Inhibitors/pharmacology , Protein Isoforms , Machine Learning , Structure-Activity Relationship
3.
ACS Omega ; 8(14): 13232-13242, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065046

ABSTRACT

The discovery of new drug candidates to inhibit an intended target is a complex and resource-consuming process. A machine learning (ML) method for predicting drug-target interactions (DTI) is a potential solution to improve the efficiency. However, traditional ML approaches have limitations in accuracy. In this study, we developed a novel ensemble model CoGT for DTI prediction using multilayer perceptron (MLP), which integrated graph-based models to extract non-Euclidean molecular structures and large pretrained models, specifically chemBERTa, to process simplified molecular input line entry systems (SMILES). The performance of CoGT was evaluated using compounds inhibiting four Janus kinases (JAKs). Results showed that the large pretrained model, chemBERTa, was better than other conventional ML models in predicting DTI across multiple evaluation metrics, while the graph neural network (GNN) was effective for prediction on imbalanced data sets. To take full advantage of the strengths of these different models, we developed an ensemble model, CoGT, which outperformed other individual ML models in predicting compounds' inhibition on different isoforms of JAKs. Our data suggest that the ensemble model CoGT has the potential to accelerate the process of drug discovery.

4.
MAbs ; 14(1): 2115205, 2022.
Article in English | MEDLINE | ID: mdl-36041060

ABSTRACT

T cells are one of the most important effector cells in cancer immunotherapy. Various T cell-dependent bispecific antibody (TDB) drugs that engage T cells for targeted cancer cell lysis are being developed. Here, we describe supra-molecular T-cell redirecting antibody fragment-anchored liposomes (TRAFsomes) and report their immune modulation and anti-cancer effects. We found that TRAFsomes containing different copies of anti-CD3 fragments displayed different T cell modulation profiles, showing that optimization of surface density is needed to define the therapeutic window for potentiating cancer cell-specific immune reactions while minimizing nonspecific side effects. Moreover, small molecular immunomodulators may also be incorporated by liposomal encapsulation to drive CD8 + T cell biased immune responses. In vivo studies using human peripheral blood mononuclear cell reconstituted mouse models showed that TRAFsomes remained bounded to human T cells and persisted for more than 48 hours after injection. However, only TRAFsomes containing a few anti-CD3 (n = 9) demonstrated significant T cell-mediated anti-cancer activities to reverse tumor growth. Those with more anti-CD3s (n = 70) caused tumor growth and depletion of human T cells at the end of treatments. These data suggested that TRAFsomes can be as potent as traditional TDBs and the liposomal structure offers great potential for immunomodulation and improvement of the therapeutic index.Abbreviation: Chimeric antigen receptor T cells (CAR-T cells), Cytokine release syndrome (CRS) Cytotoxic T cell (CTL) Effector: target ratios (E:T ratios), Heavy chain (HC) Immune-related adverse events (irAE), Large unilamellar vesicle (LUV), Peripheral blood mononuclear cells (PBMCs, Single-chain variable fragment (scFv), T cell-dependent bispecific antibody (TDB), T cell redirecting antibody fragment-anchored liposomes (TRAFsomes), Methoxy poly-(ethylene glycol) (mPEG).


Subject(s)
Antibodies, Bispecific , Neoplasms , Single-Chain Antibodies , Animals , CD3 Complex , Humans , Immunotherapy , Leukocytes, Mononuclear/metabolism , Liposomes/metabolism , Liposomes/therapeutic use , Mice
5.
Phytomedicine ; 104: 154140, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35752081

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a long-term, progressive, and disabling autoimmune disease. It causes inflammation, swelling and pain in and around the joints and other body organs. Currently, no cure is available for RA. Clinical interventions can only relieve the condition, and at least 30% of RA patients do not respond to first­line therapy. This means that the development of more effective therapies against RA is urgently needed. OBJECTIVE: This study aimed to assess the anti-rheumatoid arthritis effect of chelerythrine (CLT) and explore its mechanism of action. METHODS: The cytotoxic effect of CLT on human rheumatoid arthritis fibroblast-like synoviocyte (HFLS-RA) cells and HFLS-normal cells were measured by MTT assay. The growth and migration of HFLS-RA cells were determined by colony-formation and wound-healing assay. The level of intracellular reactive oxygen species (ROS) was detected using the DCFH-DA reagent. Cell apoptosis was measured by flow cytometry, TUNEL staining, caspase 3 activity, as well as the activation of apoptosis related proteins. In addition, the levels of autophagy related markers such as LC3B and P62 were determined by immunocytochemistry and western blotting. Lastly, the anti-RA effect of CLT was evaluated in an Adjuvant-Induced Arthritis(AIA) rat model and the severity of arthritis was detected and quantified using macroscopic inspection and X­ray imaging. RESULTS: We discovered that treatment with CLT effectively inhibited the migration and colony-formation of the HFLS-RA cells and resulted in cell death. Moreover, CLT increased the intracellular level of ROS and the apoptotic rate of HFLS-RA by activating the AMPK/mTOR/ULK-1 signaling pathways. In vivo study showed CLT effectively ameliorated AIA in rats, protecting them from inflammation and bone damage. CONCLUSION: Our study shows CLT is an effective agent for ameliorating RA in vitro and in vivo by modulation of the AMPK/mTOR/ULK-1 signaling pathway. These findings indicate that CLT is a great potential candidate for development as a therapeutic agent for the prevention and treatment of RA.


Subject(s)
AMP-Activated Protein Kinases , Arthritis, Rheumatoid , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Benzophenanthridines , Cell Proliferation , Humans , Inflammation/complications , Intracellular Signaling Peptides and Proteins/metabolism , Rats , Reactive Oxygen Species , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
6.
Sci Transl Med ; 14(643): eabl3649, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507675

ABSTRACT

Immunomodulators that remodel the tumor immunosuppressive microenvironment have been combined with anti-programmed death 1 (α-PD1) or anti-programmed death ligand 1 (α-PDL1) immunotherapy but have shown limited success in clinical trials. However, therapeutic strategies to modulate the immunosuppressive microenvironment of lymph nodes have been largely overlooked. Here, we designed an albumin nanoparticle, Nano-PI, containing the immunomodulators PI3Kγ inhibitor (IPI-549) and paclitaxel (PTX). We treated two breast cancer mouse models with Nano-PI in combination with α-PD1, which remodeled the tumor microenvironment in both lymph nodes and tumors. This combination achieved long-term tumor remission in mouse models and eliminated lung metastases. PTX combined with IPI-549 enabled the formation of a stable nanoparticle and enhanced the repolarization of M2 to M1 macrophages. Nano-PI not only enhanced the delivery of both immunomodulators to lymph nodes and tumors but also improved the drug accumulation in the macrophages of these two tissues. Immune cell profiling revealed that the combination of Nano-PI with α-PD1 remodeled the immune microenvironment by polarizing M2 to M1 macrophages, increasing CD4+ and CD8+ T cells, B cells, and dendritic cells, decreasing regulatory T cells, and preventing T cell exhaustion. Our data suggest that Nano-PI in combination with α-PD1 modulates the immune microenvironment in both lymph nodes and tumors to achieve long-term remission in mice with metastatic breast cancer, and represents a promising candidate for future clinical trials.


Subject(s)
Breast Neoplasms , Nanoparticles , Albumins/therapeutic use , Animals , Breast Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Female , Humans , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Tumor Microenvironment
7.
Mol Pharm ; 14(6): 1841-1851, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28035828

ABSTRACT

We rationally formulated a nucleic acid nanovector platform utilizing endogenous molecules in the following steps: nucleic acids are initially packed by a multifunctional peptide and a cationic liposome to form positively charged ternary complexes through electrostatic interaction; then the ternary complexes were coated with hyaluronic acid (HA) to form negatively charged quaternary nanocomplexes (Q-complexes). Among the components of Q-complexes, the multifunctional peptide was composed of a poly-16-arginine (R16) and a hepatic tumor-targeted cell penetrating peptide (KRPTMRFRYTWNPMK); the cationic lipid component included DOTAP and fusogenic lipid DOPE; the HA component shielded the cationic ternary complexes and actively targeted the CD44 overexpressed on the surface of tumor cells. Q-complexes have showed a relatively high stability in the medium, and HA component partially separated from the nanocomplexes after the Q-complexes bound to the cancer cells. The Q-complexes showed significantly enhanced nucleic acid delivery activity than the corresponding quaternary complexes containing R16 and nonvisible cytotoxicity in SCMM-7721 cells. In vivo, a selected Q-complex HLP1R specifically targeted and entered tumor cells without affecting normal tissues. Furthermore, HLP1R wrapped survivin siRNA efficiently and silenced the targeting gene in the liver orthotropic transplantation tumor models and showed nontoxic in vivo. This study reveals that Q-complexes are reasonable and feasible gene therapeutic carriers.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Nucleic Acids/metabolism , Animals , Cell Line, Tumor , Flow Cytometry , Gene Silencing , Humans , Hyaluronic Acid/chemistry , Inhibitor of Apoptosis Proteins/genetics , Liposomes/chemistry , Luciferases/genetics , Male , Mice , Mice, Nude , Microscopy, Confocal , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Peptides/chemistry , Survivin
8.
Int J Nanomedicine ; 11: 6283-6295, 2016.
Article in English | MEDLINE | ID: mdl-27920533

ABSTRACT

A safe and efficient quaternary gene delivery system (named Q-complexes) was constructed based on self-assembly of molecules through noncovalent bonds. This system was formulated through the cooperation and competing interactions of cationic liposomes, multifunctional peptides, and DNA, followed by coating hyaluronic acid on the surface of the ternary complexes. The multifunctional peptide was composed of two functional domains: penetrating hepatic tumor-targeted cell moiety (KRPTMRFRYTWNPMK) and a wrapping gene sequence (polyarginine 16). The effect of spacer insertion between the two domains of multifunctional peptide on the intracellular transfection of Q-complexes was further studied. Experimental results showed that the formulations assembled with various peptides in the spacer elements possessed different intercellular pathways and transfection efficiencies. The Q-complexes containing peptide in the absence of spacer element (Pa) showed the highest gene expression among all samples. The Q-complexes containing peptides with a noncleavable spacer GA (Pc) had no ability of intracellular nucleic acid delivery, whereas those with a cleavable spacer RVRR (Pd) showed moderate transfection activity. These results demonstrated that the different spacers inserted in the multifunctional peptide played an important role in in vitro DNA transfection efficiency. Atomic force microscopy images showed that the morphologies of ternary complexes (LPcD) and Q-complexes (HLcPD) were crystal lamellas, whereas those of other nanocomplexes were spheres. Circular dichroism showed the changed configuration of peptide with spacer GA in nanocomplexes compared with that of its free state, whereas the Pa configuration without spacer in nanocomplexes was consistent with that of its free state. The present study contributed to the structural understanding of Q-complexes, and further effective modification is in progress.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell-Penetrating Peptides/chemistry , DNA/administration & dosage , DNA/chemistry , Gene Transfer Techniques , Liposomes/administration & dosage , Liver Neoplasms/genetics , Amino Acid Sequence , Carcinoma, Hepatocellular/pathology , Cations/chemistry , Circular Dichroism , DNA/genetics , Flow Cytometry , Green Fluorescent Proteins/metabolism , Humans , Liposomes/chemistry , Liver Neoplasms/pathology , Microscopy, Atomic Force , Peptides/chemistry , Peptides/metabolism , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...