Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(21): 4464-4478, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37581614

ABSTRACT

PURPOSE: Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN: Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS: We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNß signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS: We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNß signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , NF-kappa B/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Transcription Factors/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mutation , Nucleotidyltransferases/genetics , Nucleotidyltransferases/therapeutic use , Tumor Microenvironment
2.
Cell Res ; 14(2): 117-24, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15115612

ABSTRACT

LIGHT [homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM/TR2)] is a new member of TNF superfamily. The HT-29 colon cancer cell line is the most sensitive to LIGHT-induced, IFNg-mediated apoptosis among the cell lines we have examined so far. Besides downregulation of Bcl-XL, upregulation of Bak, and activation of both PARP [poly (ADP-ribose) polymerase] and DFF45 (DNA fragmentation factor), LIGHT-induced, IFNg-mediated apoptosis of HT-29 cells involves extensive caspase activation. Caspase-8 and caspase-9 activation, as shown by their cleavages appeared as early as 24 h after treatment, whereas caspase-3 and caspase-7 activation, as shown by their cleavages occurred after 72 h of LIGHT treatment. Caspase-3 inhibitor Z-DEVD-FMK (benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone) and a broad range caspase inhibitor Z-VAD-FMK (benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone) were able to block LIGHT-induced, IFNg-mediated apoptosis of HT-29 cells. The activity of caspase-3, which is one of the major executioner caspases, was found to be inhibited by both Z-DEVD-MFK and Z-VAD-FMK. These results suggest that LIGHT-induced, IFNg-mediated apoptosis of HT-29 cells is caspase-dependent, and LIGHT signaling is mediated through both death receptor and mitochondria pathways.


Subject(s)
Apoptosis/physiology , Interferon-gamma/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/drug effects , Caspase Inhibitors , Caspases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Enzyme Activation/drug effects , HT29 Cells , Humans , Interferon-gamma/pharmacology , Membrane Proteins/pharmacology , Oligopeptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor Ligand Superfamily Member 14 , Tumor Necrosis Factor-alpha/pharmacology , bcl-2 Homologous Antagonist-Killer Protein , bcl-X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...