Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687489

ABSTRACT

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Subject(s)
Hesperidin , Pyruvaldehyde , Animals , Pyruvaldehyde/metabolism , Pyruvaldehyde/chemistry , Hesperidin/metabolism , Hesperidin/chemistry , Hesperidin/analogs & derivatives , Rats , Male , Rats, Sprague-Dawley , Humans
2.
Food Chem ; 448: 139079, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38520989

ABSTRACT

Esterification of anthocyanins with saturated fatty acids have been widely investigated, while that with unsaturated fatty acids is little understood. In this study, crude extract (purity âˆ¼ 35 %) of cyanidin-3-O-glucoside (C3G) from black bean seed coat was utilized as reaction substrate, and enzymatically acylated with unsaturated fatty acid (oleic acid). Optimization of various reaction parameters finally resulted in the highest acylation rate of 54.3 %. HPLC-MS/MS and NMR analyses elucidated the structure of cyanidin-3-O-glucoside-oleic acid ester (C3G-OA) to be cyanidin-3-O-(6″-octadecene)-glucoside. Introduction of oleic acid into C3G improved the lipophilicity, antioxidant ability, and antibacterial activity. Further, the color and substance stability analyses showed that the susceptibility of C3G and C3G-OA to different thermal, peroxidative, and illuminant treatments were highly pH dependent, which suggested individual application guidelines. Moreover, C3G-OA showed lower toxicity to normal cell (QSG-7701) and better inhibitory effect on the proliferation of HepG2 cells than C3G, which indicated its potential anti-tumor bioactivity.


Subject(s)
Anthocyanins , Oleic Acid , Anthocyanins/chemistry , Humans , Oleic Acid/chemistry , Esterification , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Hep G2 Cells , Phaseolus/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Molecular Structure
3.
J Agric Food Chem ; 72(5): 2434-2450, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284798

ABSTRACT

Glyoxal is a highly reactive aldehyde widely present in common diet and environment and inevitably generated through various metabolic pathways in vivo. Glyoxal is easily produced in diets high in carbohydrates and fats via the Maillard reaction, carbohydrate autoxidation, and lipid peroxidation, etc. This leads to dietary intake being a major source of exogenous exposure. Exposure to glyoxal has been positively associated with a number of metabolic diseases, such as diabetes mellitus, atherosclerosis, and Alzheimer's disease. It has been demonstrated that polyphenols, probiotics, hydrocolloids, and amino acids can reduce the content of glyoxal in foods via different mechanisms, thus reducing the risk of exogenous exposure to glyoxal and alleviating carbonyl stresses in the human body. This review discussed the formation and metabolism of glyoxal, its health hazards, and the strategies to reduce such health hazards. Future investigation of glyoxal from different perspectives is also discussed.


Subject(s)
Glyoxal , Maillard Reaction , Humans , Glyoxal/chemistry , Lipid Peroxidation , Food
4.
Int J Biol Macromol ; 237: 123975, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36907300

ABSTRACT

As a newly superior konjac variety, the Amorphophallus bulbifer (A. bulbifer) was easily browning during the alkali-induced process. In this study, five different inhibitory methods, such as citric-acid heat pretreatment (CAT), mixed with citric acid (CA), mixed with ascorbic acid (AA), mixed with L-cysteine (CYS), and mixed with potato starch (PS, containing TiO2), were separately used to inhibit the browning of alkali-induced heat-set A. bulbifer gel (ABG). The color and gelation properties were then investigated and compared. Results showed that the inhibitory methods had significant influences on the appearance, color, physicochemical properties, rheological properties, and microstructures of ABG. Among them, the CAT method not only significantly inhibited the browning of ABG (ΔE value dropped from 25.74 to 14.68) but also improved the water-holding capacity, moisture distribution, and thermal stability without damaging the textural properties of ABG. Moreover, SEM revealed that both CAT and adding PS methods could exhibit the more dense gel network structures of ABG than other methods. It was reasonable to conclude that ABG-CAT offered a superior method to prevent browning compared to the other methods based on the texture, microstructure, color, appearance, and thermal stability of the product.


Subject(s)
Amorphophallus , Hot Temperature , Amorphophallus/chemistry , Starch
5.
Int J Biol Macromol ; 228: 242-250, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36563814

ABSTRACT

As a newly superior konjac variety, the Amorphophallus bulbifer (A. bulbifer) has several unique advantages of high reproductive coefficient, short growth cycle, high disease resistance, high konjac glucomannan (KGM) content and climate adaption to hot or humid conditions. However, the gel formed by KGM from the A. bulbifer flour is easily browning during the alkali-induced process and the mechanism underlying them is still unclear. In order to explore the browning mechanisms, the changes of composition and color parameters of KGM were investigated during deacetylation in this research. The L*, h*, total phenols, total flavonoids, reducing sugars, and amino acids decreased along with the increase of deacetylation degree of KGM while a*, ΔЕ, and browning index increased. The results indicated that the oxidation or polymerization of polyphenols and flavones in alkaline circumstances, and the carbonyl ammonia reaction between reducing sugars and amino acids may be the main reasons for color changes of KGM flour during deacetylation. Hence, this study was expected to provide the theoretical basis for the inhibition of KGM gel browning and further broaden the application range of KGM in food and other industries.


Subject(s)
Amorphophallus , Mannans , Oxidation-Reduction , Mannans/chemistry , Flour , Amorphophallus/chemistry , Sugars
6.
Int J Biol Macromol ; 216: 95-104, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35793743

ABSTRACT

The Amorphophallus bulbifer (A. bulbifer) as a newly developed superior konjac variety has the advantages of short growth cycle, high reproductive coefficient, disease resistance and adaptation to humid or hot environments. Because of its good growth characteristics and high konjac glucomannan (KGM) content, A. bulbifer has great potential to be used as KGM resources in food industry. However, KGM from the A. bulbifer flour has very high viscosity even in low concentration, and the gels formed by KGM are easily browning during the alkali-induced process. These shortcomings are key factors that limit its application in the food industry. In order to solve this problem, KGM was modified by citric-acid treatment (CAT), and the effect of CAT on the physicochemical and gel properties of KGM was investigated in this study. The results indicated that the apparent viscosity and ΔE value of the KGM treated with 1.2 M CAT for 2 h were 948.66 Pa·s and 14.55, respectively, which were significantly lower than native KGM in the same variety. Moreover, the CAT did not significantly affect the texture properties of KGM gels. Hence, it will be extremely valuable for developing innovative low-calorie foods favored by consumers and industrial production based on KGM.


Subject(s)
Amorphophallus , Amorphophallus/chemistry , Citric Acid , Flour , Gels , Mannans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...