Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 949: 175135, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084396

ABSTRACT

Marine aerosols (MA) can be influenced by sea ice concentration, potentially playing a pivotal role in the formation of cloud condensation nuclei and exerting an impact on regional climate. In this study, a high-resolution aerosol observation system was employed to measure the concentration and size of aerosols in the floating ice region and seawater region of the Arctic Ocean during the 8th and 9th Chinese Arctic Expedition Research Cruise. The identification of aerosol sources was conducted using a modified positive definite matrix factorization method and a backward air mass trajectory model. Two types of MA including the sea-salt aerosol (SSA) and the marine biogenic aerosol (BA) were identified and their concentrations were calculated. Then the physical-chemical characteristics of MA in the floating ice region and seawater region were compared under normalized conditions (-2.5 °C < T < -0.1 °C; 5.80 m/s < WS < 10.95 m/s) to discern the impact of sea ice. A unimodal distribution was observed for MA number concentration with a dominant peak ranging from 0.5 µm to 1.0 µm in size range. The findings revealed that the presence of sea ice cover led to a significant reduction of 52.2 % in the number concentration of SSA, while exerting minimal influence on its composition. BA number concentration in the floating ice region was 33.3 % higher than that in the seawater region. Strong winds (wind speed >6.5 m/s) transported organic matter and nutrients entrapped in sea ice into the atmosphere, leading to an increase in BA concentration. However, the presence of sea ice cover hampered the exchange of biogenic gases between the ocean and air, resulting in a reduction of secondary BA formation. Our study elucidates the correlation between MA release and sea ice coverage in the Arctic Ocean, thereby establishing a theoretical foundation for climate prediction models.

2.
Genes (Basel) ; 14(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36833314

ABSTRACT

The KEGG Orthology (KO) database is a widely used molecular function reference database which can be used to conduct functional annotation of most microorganisms. At present, there are many KEGG tools based on the KO entries for annotating functional orthologs. However, determining how to efficiently extract and sort the annotation results of KEGG still hinders the subsequent genome analysis. There is a lack of effective measures used to quickly extract and classify the gene sequences and species information of the KEGG annotations. Here, we present a supporting tool: KEGG_Extractor for species-specific genes extraction and classification, which can output the results through an iterative keyword matching algorithm. It can not only extract and classify the amino acid sequences, but also the nucleotide sequences, and it has proved to be fast and efficient for microbial analysis. Analysis of the ancient Wood Ljungdahl (WL) pathway through the KEGG_Extractor reveals that ~226 archaeal strains contained the WL pathway-related genes. Most of them were Methanococcus maripaludis, Methanosarcina mazei and members of the Methanobacterium, Thermococcus and Methanosarcina genus. Using the KEGG_Extractor, the ARWL database was constructed, which had a high accuracy and complement. This tool helps to link genes with the KEGG pathway and promote the reconstruction of molecular networks. Availability and implementation: KEGG_Extractor is freely available from the GitHub.


Subject(s)
Genome , Amino Acid Sequence , Databases, Factual , Base Sequence
3.
Sci Total Environ ; 815: 152912, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34998747

ABSTRACT

Increased dry deposition of nitrogen aerosols (aerosol-N) as a result of anthropogenic emissions has caused large negative impacts on marine ecosystems. We monitored the number concentrations and sizes of inorganic nitrogen aerosols (aerosol-IN: NH4+ and NO3-) and organic nitrogen aerosols (aerosol-ON: methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, and triethylamine) by single-particle aerosol mass spectrometry (SPAMS) during the warm season (WS) and cold season (CS) of 2013 and 2015 in Xiamen Bay. The mean hourly number concentration of aerosol-IN (874/h) overwhelmed that of aerosol-ON (103/h), accounting for 83.9 ± 16.1% of aerosol-N. More than 90% of aerosol-N was concentrated in the condensation mode (0.1-0.5 µm) and droplet mode (0.5-2.0 µm). Aerosol-IN was the main contributor (80.1-94.2%) to aerosol-N deposition. New production potentially supported by the ocean's external nitrogen supply provided aerosol-N input of 11.51-11.96 g C m-2 yr-1, which contributed 17.5-18.2% of total new production in the southern East China Sea. Four potential sources of aerosol-N were identified based on the results of positive matrix factorization analysis, including secondary formation (F1), biogenic source (F2), sea spray, soil dust, biomass burning (F3), and anthropogenic sources (F4). Aerosol-N concentrations in Xiamen Bay were mainly affected by the ocean air masses during the WS and inland air masses during the CS. The percentages of aerosol-N at each backward trajectory cluster showed that the inland air masses brought more aerosol-IN emitted from biomass burning, soil dust, and secondary formation sources, whereas the ocean air masses brought more aerosol-ON emitted from a marine biogenic source into Xiamen Bay. This study provides an example of determining the number concentrations and sizes of IN and ON in aerosols by SPAMS, and helps us further understand the dry deposition and sources of IN and ON in aerosols in Xiamen Bay.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Bays , Ecosystem , Environmental Monitoring , Nitrogen , Particulate Matter/analysis , Seasons
4.
Environ Res ; 201: 111538, 2021 10.
Article in English | MEDLINE | ID: mdl-34166656

ABSTRACT

Arctic Ocean (AO) atmospheric aerosols, which are a factor influencing regional and global climate, have been greatly influenced by an increase in anthropogenic sources. To identify the impact of anthropogenic sources on regional aerosols in the AO and middle and low latitudes (MLO), a single-particle aerosol mass spectrometer was used to count and size aerosols with diameters less than 2.5 µm (PM2.5) and determine their chemical composition. The mean hourly count of PM2.5 aerosols was 1639/h in the AO, which was 57.1% lower than that in the MLO. Na_MSA, sulfate, and Na_rich were three major components, which accounted for 74.3% of PM2.5 aerosols in the AO. The size distribution of PM2.5 aerosols was unimodal, peaking between 0.42 µm and 1.64 µm. A source apportionment method for single aerosol particles in the Arctic was established using positive matrix factorization (PMF) combined with backward air mass trajectory and principal component analysis (PCA). Three potential sources of aerosols were identified: marine sources; anthropogenic sources; and secondary formation. The largest contribution to aerosols in the AO was from marine sources, accounting for 50.6%. This source was 20.4% higher in the AO than that in the MLO. Secondary formation contributed 19.8% and 36.5% to aerosols in the AO and MLO, respectively. However, the contribution of anthropogenic sources to aerosols was 29.6% in the AO, and this was 3.7% lower than that in the MLO. Our study provides a useful method for identifying sources of aerosols in the Arctic, and the results showed that although marine sources were the largest contributors to aerosols in the AO, the contribution of anthropogenic sources could not be ignored.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Oceans and Seas , Particulate Matter/analysis
5.
Sci Total Environ ; 745: 140773, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32717597

ABSTRACT

Sea ice retreat in the polar region is expected to increase the emissions of sea salt aerosols and biogenic gases, which may significantly impact the climate by increasing cloud condensation nuclei (CCN) population and changing solar radiation. In this study, aerosol compositions were measured at high-time-resolution (1 h) with an in-situ gas and aerosol composition monitoring system in polynya regions of the Southern Ocean (SO) to access the effects of sea ice concentrations on the sea salt aerosol (SSA) and secondary biogenic aerosol (SBA) in the SO. SSA emissions increased by more than 30% as sea ice concentration decreased from 85% to 29%. However, SSA emissions did not increase monotonically as the sea ice concentration decreased. The highest SSA concentration occurred in drifting sea ice region. Sea ice melting increased SBA concentrations by enhancing the air-sea exchanges of SBA precursor gases and the release of algae from sea ice. Positive correlations between SSA and wind speed were present in different sea ice regions, while SBA didn't reveal an obvious correlation with wind speed in the SO. The impact of wind speed on the SSA emissions were very different, Higher slope value of 41.83 and 35.81 were present in the DSI and SIF region, while the value was only about 16.74 in the SIC region. The results extended the knowledge of the effect of future sea ice retreat on marine aerosol emissions and potential climate changes in the polar region.

6.
Environ Sci Technol ; 53(22): 13064-13070, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31670933

ABSTRACT

Methanesulfonic acid (MSA), derived from the oxidation of dimethylsulfide (DMS), has a significant impact on biogenic sulfur cycle and climate. Gaseous MSA (MSAg) has been often ignored in previous studies due to its quick conversion to particulate MSA (MSAp) and low concentrations. MSAg, MSAp, and nss-SO42- were observed simultaneously for the first time with high-time-resolution (1 h) in the Southern Ocean (SO). The mean MSAg level reached up to 3.3 ± 1.6 pptv, ranging from ∼24.5 pptv in the SO, contributing to 31% ± 3% to the total MSA (MSAT). A reduction of the MSA to nss-SO42- ratios by about 30% was obtained when MSAg was not accounted for in the calculation, indicating that MSAg was very important in the assessment of the biogenic sulfur contributions in the atmosphere. Mass ratios of MSA to nss-SO42- increased first and then decreased with the temperature from -10 to 5 °C, with a maximum value at the temperature of -3 °C. Positive correlations between MSAg to MSAT ratios and temperature were presented, when the temperature was higher than 5 °C. This study highlights the importance of MSAg for understanding the atmospheric DMS oxidation mechanism and extends the knowledge of MSA formation in the marine atmosphere.


Subject(s)
Atmosphere , Gases , Aerosols , Mesylates , Oceans and Seas
7.
Environ Sci Process Impacts ; 21(10): 1642-1649, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31465050

ABSTRACT

Dimethyl sulfide (DMS) production in the northern Arctic Ocean has been considered to be minimal because of high sea ice concentration and extremely low productivity. However, we found DMS concentration (1-33 nM) in melt ponds on sea ice at a very high latitude (78°N) in the central Arctic Ocean to be up to ten times that in the adjacent open ocean (<3 nM). We divided melt ponds into three categories: freshwater melt ponds, brackish melt ponds, and open saline melt ponds. Melt ponds from each category had different formation mechanisms and associated DMS contents. Closed brackish ponds (salinity of >20) had particularly high DMS concentration. Water in brackish ponds was mixed with open ocean water in the past via a hole at the bottom of the floe that kept the pond open to the ocean; therefore, unlike freshwater melt ponds, brackish ponds became sites of DMS accumulation. Our results suggest that continuous increase in melt pond coverage on Arctic sea ice could considerably impact future Arctic climate as well as enhancing DMS concentration in the Arctic atmosphere.


Subject(s)
Fresh Water/chemistry , Seawater/chemistry , Sulfides/analysis , Arctic Regions , Atmosphere , Climate , Climate Change , Ice Cover/chemistry , Ponds/chemistry , Salinity
8.
J Environ Sci (China) ; 83: 217-228, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31221385

ABSTRACT

The impact of air masses motion on marine aerosol properties was investigated using an on-board single particle mass spectrometer (SPAMS) deployed for the determination of single particle size resolved chemical composition over Southeast China Sea. Two aerosol blooms (E1 and E2) were observed during the cruise. High average particle number count occurred in E1 (7320), followed by E2 (5850), which was more than 100-150 times of the average particle number count during normal periods. Particles were classified as four major sources, including continental source, shipping source, marine source, and transport source based on the mass spectral similarity. Transport source was identified as those particles with high particle number count occurred only during aerosol bloom period. Three sub-types of EC-Ca, OC-Ca, and Al-rich were classified as transport source. EC-Ca was the dominant particles of the transport source, accounting for more than 70% of the total particles in aerosol bloom events. A uni-modal size distribution in the size range of 0.1-2.0 µm was observed during normal period, while a bimodal distribution with a tiny mode (<0.3 µm) and a coarse mode between 0.4 and 0.6 µm was present during aerosol bloom. The variation of aerosol source is consistent with air masses back trajectories, for the reason that most of the long-range air trajectories are from the ocean, while short air trajectories originate in the continental regions, which means that air masses have a significant impact on the aerosol physical-chemical properties along their tracks.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Air Movements , Air Pollution/statistics & numerical data , Atmosphere/chemistry , China , Particulate Matter/analysis
9.
Environ Sci Pollut Res Int ; 25(30): 30659-30670, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30178406

ABSTRACT

The chemical composition of atmospheric aerosols was characterized using an on-board single particle aerosol mass spectrometer (SPAMS) over the Southeast China Sea. High-time-resolution observation of marine aerosols was carried out to clarify the source of aerosols and the interaction of marine and continental aerosols. Atmospheric aerosols were determined by the interaction of continental and marine sources over coastal area. Aerosols from continental sources flux into sea surfaces through deposition or diffusion, which results in the rapid decrease of continental aerosols. Five main subtypes of carbonaceous particles are identified as C_Al-Si, C_V-Ni, C_S, C_K, and C_secondary to clarify the impact of marine and continental sources on atmospheric aerosols. High fraction of C_Al-Si and C_secondary is present over XA (Xiamen anchorage), accounting for 23.8% and 18.6% of total carbonaceous particles. Contrarily, the relative percentage of C_S increases as the distance from land to sea increases. The influence of continental aerosols declines, while the contribution of marine aerosols increases as the distance from land to sea increases. Air masses in XA, LSA (land to sea area), SLA (sea to land area), and SA (sea area) were all from ocean during the observation period, resulting in low relative fraction of continental aerosols in SLA, SA, and LSA. High-time-resolution measurement is useful to understand aerosol source types and the impact of marine and continental sources on marine atmosphere aerosols.


Subject(s)
Aerosols/analysis , Air Pollutants/chemistry , Air Pollution/analysis , Atmosphere , China , Environmental Monitoring , Mass Spectrometry/methods , Particle Size , Particulate Matter/chemistry
10.
Sci Rep ; 7(1): 13238, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038559

ABSTRACT

A comprehensive investigation using the air quality network and meteorological data of China in 2015 showed that PM2.5 driven by cold surges from the ground level could travel up to 2000 km from northern to southern China within two days. Air pollution is more severe and prominent during the winter in north China due to seasonal variations in energy usage, trade wind movements, and industrial emissions. In February 2015, two cold surges traveling from north China caused a temporary increase in the concentration of PM2.5 in Shanghai. Subsequently, the concentration of PM2.5 in Xiamen increased to a high of 80 µg/m3, which is double the average PM2.5 concentration in Xiamen during the winter. This finding is a new long-range transport mechanism comparing to the well-established mechanism, with long-range transport more likely to occur in the upper troposphere than at lower levels. These observations were validated by results from the back trajectory analysis and the RAMS- CMAQ model. While wind speed was found to be a major facilitator in transporting PM2.5 from Beijing to Xiamen, more investigation is required to understand the complex relationship between wind speed and PM2.5 and how it moderates air quality in Beijing, Shanghai, and Xiamen.

11.
Sci Total Environ ; 584-585: 154-163, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28147295

ABSTRACT

We investigated horizontal and vertical distributions of DMS in the upper water column of the Amundsen Sea Polynya and Pine Island Polynya during the austral summer (January-February) of 2016 using a membrane inlet mass spectrometer (MIMS) onboard the Korean icebreaker R/V Araon. The surface water concentrations of DMS varied from <1 to 400nM. The highest DMS (up to 300nM) were observed in sea ice-polynya transition zones and near the Getz ice shelf, where both the first local ice melting and high plankton productivity were observed. In other regions, high DMS concentration was generally accompanied by higher chlorophyll and ΔO2/Ar. The large spatial variability of DMS and primary productivity in the surface water of the Amundsen Sea seems to be attributed to melting conditions of sea ice, relative dominance of Phaeocystis Antarctica as a DMS producer, and timing differences between bloom and subsequent DMS productions. The depth profiles of DMS and ΔO2/Ar were consistent with the horizontal surface data, showing noticeable spatial variability. However, despite the large spatial variability, in contrast to the previous results from 2009, DMS concentrations and ΔO2/Ar in the surface water were indistinct between the two major domains: the sea ice zone and polynya region. The discrepancy may be associated with inter-annual variations of phytoplankton assemblages superimposed on differences in sea-ice conditions, blooming period, and spatial coverage along the vast surface area of the Amundsen Sea.

12.
Chemosphere ; 159: 244-255, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27295441

ABSTRACT

Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Cyclonic Storms , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Atmosphere , China , Particle Size , Wind
SELECTION OF CITATIONS
SEARCH DETAIL