Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4460-4475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38261485

ABSTRACT

Noisy labels are often encountered in datasets, but learning with them is challenging. Although natural discrepancies between clean and mislabeled samples in a noisy category exist, most techniques in this field still gather them indiscriminately, which leads to their performances being partially robust. In this paper, we reveal both empirically and theoretically that the learning robustness can be improved by assuming deep features with the same labels follow a student distribution, resulting in a more intuitive method called student loss. By embedding the student distribution and exploiting the sharpness of its curve, our method is naturally data-selective and can offer extra strength to resist mislabeled samples. This ability makes clean samples aggregate tightly in the center, while mislabeled samples scatter, even if they share the same label. Additionally, we employ the metric learning strategy and develop a large-margin student (LT) loss for better capability. It should be noted that our approach is the first work that adopts the prior probability assumption in feature representation to decrease the contributions of mislabeled samples. This strategy can enhance various losses to join the student loss family, even if they have been robust losses. Experiments demonstrate that our approach is more effective in inaccurate supervision. Enhanced LT losses significantly outperform various state-of-the-art methods in most cases. Even huge improvements of over 50% can be obtained under some conditions.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13203-13217, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37384465

ABSTRACT

Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 6537-6551, 2023 May.
Article in English | MEDLINE | ID: mdl-36054401

ABSTRACT

Multi-label learning focuses on the ambiguity at the label side, i.e., one instance is associated with multiple class labels, where the logical labels are always adopted to partition class labels into relevant labels and irrelevant labels rigidly. However, the relevance or irrelevance of each label corresponding to one instance is essentially relative in real-world tasks and the label distribution is more fine-grained than the logical labels by denoting one instance with a certain number of the description degrees of all class labels. As the label distribution is not explicitly available in most training sets, a process named label enhancement emerges to recover the label distributions in training datasets. By inducing the generative model of the label distribution and adopting the variational inference technique, the approximate posterior density of the label distributions should maximize the variational lower bound. Following the above consideration, LEVI is proposed to recover the label distributions from the training examples. In addition, the multi-label predictive model is induced for multi-label learning by leveraging the recovered label distributions along with a specialized objective function. The recovery experiments on fourteen label distribution datasets and the predictive experiments on fourteen multi-label learning datasets validate the advantage of our approach over the state-of-the-art approaches.

4.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 5199-5210, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33788680

ABSTRACT

Label-specific features serve as an effective strategy to learn from multi-label data, where a set of features encoding specific characteristics of each label are generated to help induce multi-label classification model. Existing approaches work by taking the two-stage strategy, where the procedure of label-specific feature generation is independent of the follow-up procedure of classification model induction. Intuitively, the performance of resulting classification model may be suboptimal due to the decoupling nature of the two-stage strategy. In this paper, a wrapped learning approach is proposed which aims to jointly perform label-specific feature generation and classification model induction. Specifically, one (kernelized) linear model is learned for each label where label-specific features are simultaneously generated within an embedded feature space via empirical loss minimization and pairwise label correlation regularization. Comparative studies over a total of sixteen benchmark data sets clearly validate the effectiveness of the wrapped strategy in exploiting label-specific features for multi-label classification.

5.
IEEE Trans Cybern ; 52(6): 4459-4471, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33206614

ABSTRACT

Multi-label learning deals with training examples each represented by a single instance while associated with multiple class labels. Due to the exponential number of possible label sets to be considered by the predictive model, it is commonly assumed that label correlations should be well exploited to design an effective multi-label learning approach. On the other hand, class-imbalance stands as an intrinsic property of multi-label data which significantly affects the generalization performance of the multi-label predictive model. For each class label, the number of training examples with positive labeling assignment is generally much less than those with negative labeling assignment. To deal with the class-imbalance issue for multi-label learning, a simple yet effective class-imbalance aware learning strategy called cross-coupling aggregation (COCOA) is proposed in this article. Specifically, COCOA works by leveraging the exploitation of label correlations as well as the exploration of class-imbalance simultaneously. For each class label, a number of multiclass imbalance learners are induced by randomly coupling with other labels, whose predictions on the unseen instance are aggregated to determine the corresponding labeling relevancy. Extensive experiments on 18 benchmark datasets clearly validate the effectiveness of COCOA against state-of-the-art multi-label learning approaches especially in terms of imbalance-specific evaluation metrics.

6.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7185-7198, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34106863

ABSTRACT

Multi-dimensional classification (MDC) assumes heterogeneous class spaces for each example, where class variables from different class spaces characterize semantics of the example along different dimensions. The heterogeneity of class spaces leads to incomparability of the modeling outputs from different class spaces, which is the major difficulty in designing MDC approaches. In this article, we make a first attempt toward adapting maximum margin techniques for MDC problem and a novel approach named M3MDC is proposed. Specifically, M3MDC maximizes the margins between each pair of class labels with respect to individual class variable while modeling relationship across class variables (as well as class labels within individual class variable) via covariance regularization. The resulting formulation admits convex objective function with nonlinear constraints, which can be solved via alternating optimization with quadratic programming (QP) or closed-form solution in either alternating step. Comparative studies on the most comprehensive real-world MDC datasets to date are conducted and it is shown that M3MDC achieves highly competitive performance against state-of-the-art MDC approaches.

7.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 8796-8811, 2022 12.
Article in English | MEDLINE | ID: mdl-34648433

ABSTRACT

In partial label learning, a multi-class classifier is learned from the ambiguous supervision where each training example is associated with a set of candidate labels among which only one is valid. An intuitive way to deal with this problem is label disambiguation, i.e., differentiating the labeling confidences of different candidate labels so as to try to recover ground-truth labeling information. Recently, feature-aware label disambiguation has been proposed which utilizes the graph structure of feature space to generate labeling confidences over candidate labels. Nevertheless, the existence of noises and outliers in training data makes the graph structure derived from original feature space less reliable. In this paper, a novel partial label learning approach based on adaptive graph guided disambiguation is proposed, which is shown to be more effective in revealing the intrinsic manifold structure among training examples. Other than the sequential disambiguation-then-induction learning strategy, the proposed approach jointly performs adaptive graph construction, candidate label disambiguation and predictive model induction with alternating optimization. Furthermore, we consider the particular human-in-the-loop framework in which a learner is allowed to actively query some ambiguously labeled examples for manual disambiguation. Extensive experiments clearly validate the effectiveness of adaptive graph guided disambiguation for learning from partial label examples.


Subject(s)
Algorithms , Humans
8.
Article in English | MEDLINE | ID: mdl-34928787

ABSTRACT

In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.

9.
IEEE Trans Pattern Anal Mach Intell ; 43(10): 3587-3599, 2021 10.
Article in English | MEDLINE | ID: mdl-32286956

ABSTRACT

Partial multi-label learning (PML) deals with the problem where each training example is associated with an overcomplete set of candidate labels, among which only some candidate labels are valid. The task of PML naturally arises in learning scenarios with inaccurate supervision, and the goal is to induce a multi-label predictor which can assign a set of proper labels for unseen instance. The PML training procedure is prone to be misled by false positive labels concealed in the candidate label set, which serves as the major modeling difficulty for partial multi-label learning. In this paper, a novel two-stage PML approach is proposed which works by eliciting credible labels from the candidate label set for model induction. In the first stage, the labeling confidence of candidate label for each PML training example is estimated via iterative label propagation. In the second stage, by utilizing credible labels with high labeling confidence, multi-label predictor is induced via pairwise label ranking coupled with virtual label splitting or maximum a posteriori (MAP) reasoning. Experimental studies show that the proposed approach can achieve highly competitive generalization performance by excluding most false positive labels from the training procedure via credible label elicitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...