Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31182, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813206

ABSTRACT

Objectives: Given the widespread use of Chinese patent medicines (CPMs) in combination with 5-aminosalicylic acid (5-ASA) for Ulcerative colitis (UC) patients, this study aimed to evaluate the efficacy and safety of nine CPMs combined with 5-ASA in the treatment of UC. Methods: A systematic literature search was conducted in eight databases from inception to May 2023 to identify eligible RCTs evaluating the effects of CPM combined with 5-ASA for the treatment of UC. The methodological quality of the included RCTs was assessed using the Cochrane risk of bias tool in Review Manager 5.4. The primary outcome of the meta-analysis was the overall response rate. The secondary outcomes included excellent rate, disease activity index (DAI), IL-6, IL-8, and TNF-α levels, mean platelet volume (MPV), fibrinogen (FIB) levels, recurrence rate, and adverse event rate. Network meta-analysis was performed using Review Manager 5.4 and Stata 15.0. Results: In total, 70 RCTs including 5973 patients and 10 treatment regimens were included. The combination of Kangfuxin Liquid (KFL) and 5-ASA showed the greatest efficacy in improving FIB levels and the overall response rate. Bupi Yichang Pill (BYP) combined with 5-ASA was associated with the fewest adverse events and the lowest recurrence rate. Hudi Enteric-coated Capsule (HEC) combined with 5-ASA ranked first in improving DAI. ZhiKang Capsule (ZKC), ChangYanNing Capsule (CYN), and Danshen Injection (DSI) combined with 5-ASA ranked first in improving IL-6, IL-10, and TNF-α levels, respectively. Shenling Baizhu Powder (SBP) combined with 5-ASA was associated with the highest excellent rate. Conclusions: CPM combined with 5-ASA may be more effective than 5-ASA alone for treating UC. Besides, CPM combined with 5-ASA could better reduce the recurrence rate and adverse event rate in UC patients. The current meta-analysis provides statistical evidence for clinical application.Systematic Review Registration: International Prospective Register of Systematic Reviews (PROSPERO), No. CRD42023433672.

2.
Sci Total Environ ; 928: 172597, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38642753

ABSTRACT

Solar-driven interfacial water purification emerges as a sustainable technology for seawater desalination and wastewater treatment to address the challenge of water scarcity. Currently, the energy losses via radiation and convection to surrounding environment minimize its energy efficiency. Therefore, it is necessary to develop strategies to minimize the heat losses for efficient water purification. Here, a novel evaporator was developed through the in situ gelation of PAM hydrogel on the surface carbonized hydroponic bamboo (PSC) to promote energy efficiency. The inherent porous and layered network structures of bamboo, in synergy with the functional hydration capacity of PAM hydrogel, facilitated adequate water transportation, while reducing evaporation enthalpy. The PAM hydrogel firmly covered on the photothermal layer surface effectively minimized the radiation and convection heat losses, while further harvesting those thermal energy that would otherwise dissipate into the surrounding environment. The reduced thermal conductivity of PSC served as a thermal insulator as well, obstructing heat transfer to bulk water and thus diminishing conduction losses. Consequently, the rational designed PSC could efficiently convert solar energy to purified water, leading to the evaporation of 2.09 kg m-2 h-1, the energy efficiency of 87.6 % under one sun irradiation, and yielding 9.6 kg m-2 fresh water over 11 h outdoor operation. Moreover, the PSC also performs excellent salt rejection, and long-term stability at outdoor experiment. These results demonstrated high and stable solar evaporation performance could be achieved if turning heat losses into a way of extra energy extraction to further enhance the evaporation performance. This strategy appears to be a promising strategy for effective thermal energy management and practical application.

3.
Article in English | MEDLINE | ID: mdl-35839288

ABSTRACT

As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human-computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously. Herein, a facile and efficient approach to integrate a hierarchical elastic e-textile is proposed by electroless silver plating on GaIn alloy liquid metal coated textiles. The continuous uneven surface of AgNPs and deposition of FAS-17 endow the textile with exceptional and robust superhydrophobic performance, in which the conductivity and the contact angle of the as-made textile could reach 2145 ± 122 S/cm and 161.5 ± 2.1°, respectively. On the basis of such excellent conductivity, the electromagnetic interference (EMI) shielding function is excavated and the average shielding efficiency (SE) reaches about 87.56 dB within frequencies of 8.2-12.4 GHz. Furthermore, due to its high elasticity and low modulus, the textile can serve as a wearable strain sensor for motion detection, health monitoring, and underwater message transmission. This work provides a novel route to fabricate high-performance hydrophobic e-textiles, in which the encapsulation strategy could be referenced for the further development of conductive textiles.

4.
Environ Res ; 199: 111264, 2021 08.
Article in English | MEDLINE | ID: mdl-33974840

ABSTRACT

In this study, a magnetic NiFe2O4/MWCNTs/BiOI composite were fabricated and applied for enhanced and sustainable photocatalytic degradation of doxycycline (DOX) under UV light irradiation. The as-synthesized material was characterized by a series of techniques and its photocatalytic property was assessed via a couple of batch tests. With the pH at 3.0 and NiFe2O4/MWCNTs/BiOI loading of 1.5 g L-1, the DOX degradation (at 45 mg L-1) efficiency could achieve 92.18% with the reaction rate constant k of 0.0072 min-1. The high mineralization of DOX suggests the strong oxidation of both the parent pollutant and the intermediary products in the ternary catalyst system. DRS spectra indicated that compared with BiOI, the introduction of NiFe2O4 and MWCNTs reduces the band gap energy of the NiFe2O4/MWCNTs/BiOI. The quenching test illustrates that h+, OH and O2- all functioned in the developed photocatalytic system, where O2- and h+ play the dominant roles in DOX degradation. The more efficient electron-h+ separation and more oxidizing species induced by UV light resulted in the significant improvement of DOX abatement in the developed coupling system compared with that on either BiOI or NiFe2O4/MWCNTs. The magnetic property of NiFe2O4/MWCNTs/BiOI enables its easy separation of the solid catalyst from the reaction solution and the sustainable application in the photocatalysis. Based on the intermediates of DOX decomposition identified by UPLC-MS, the possible degradation routes were proposed accordingly.


Subject(s)
Doxycycline , Ultraviolet Rays , Chromatography, Liquid , Light , Photolysis , Tandem Mass Spectrometry
5.
Water Res ; 190: 116716, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33290906

ABSTRACT

Sulfur-oxidizing bacteria (SOB) can drive a high level of autotrophic denitrification (AD) activity with thiosulfate (S2O32-) as the electron donor. However, the slow growth of SOB results in a low biomass concentration in the AD reactor and unsatisfactory biological nitrogen removal (BNR). In this study, our goal was to establish a high-rate thiosulfate-driven denitrification (TDD) system via sludge granulation. Granular sludge was successfully cultivated by increasing the nitrogen loading rate stepwise in thiosulfate-oxidizing/nitrate-reducing conditions in an upflow anaerobic blanket reactor. In the mature-granular-sludge reactor, a nitrate removal rate of 280 mg N/L/h was achieved with a nitrate removal efficiency of 97.7%±1.0% at a hydraulic retention time of only 15 minutes, with no nitrite detected in the effluent. Extracellular polymeric substance (EPS) analysis indicated that the proteins in loosely bound and tightly bound EPS were responsible for maintaining the compact structure of the TDD granular sludge. The dynamics of the microbial-community shift were identified by 16S rRNA high-throughput pyrosequencing analysis. The Sulfurimonas genus was found to be enriched at 74.1% of total community and may play the most critical role in the high-rate BNR. The batch assay results reveal that no nitrite accumulation occurred during nitrate reduction because the nitrate reduction rate (75.90±0.67 mg N/g MLVSS/h) was almost equal to the nitrite reduction rate (66.06±1.28 mg N/g MLVSS/h) in the thiosulfate-driven granular sludge reactor. The results of this study provide support for the establishment of a high-rate BNR system that maintains its stability with a low sludge yield.


Subject(s)
Denitrification , Sewage , Bioreactors , Extracellular Polymeric Substance Matrix , Nitrogen , RNA, Ribosomal, 16S/genetics , Thiosulfates
6.
Biosensors (Basel) ; 10(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182535

ABSTRACT

Biosensors are the core elements for obtaining significant physiological information from living organisms. To better sense life information, flexible biosensors and implantable sensors that are highly compatible with organisms are favored by researchers. Moreover, materials for preparing a new generation of flexible sensors have also received attention. Liquid metal is a liquid-state metallic material with a low melting point at or around room temperature. Owing to its high electrical conductivity, low toxicity, and superior fluidity, liquid metal is emerging as a highly desirable candidate in biosensors. This paper is dedicated to reviewing state-of-the-art applications in biosensors that are expounded from seven aspects, including pressure sensor, strain sensor, gas sensor, temperature sensor, electrical sensor, optical sensor, and multifunctional sensor, respectively. The fundamental scientific and technological challenges lying behind these recommendations are outlined. Finally, the perspective of liquid metal-based biosensors is present, which stimulates the upcoming design of biosensors.


Subject(s)
Biosensing Techniques , Metals/chemistry , Wearable Electronic Devices , Equipment Design , Prostheses and Implants
7.
Water Res ; 163: 114850, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31326695

ABSTRACT

The sulfur bioconversion-associated processes (SBAP) for sewage treatment have been extensively reported so far. In this study, biological thiosulfate reduction (BTR)-driven biotechnology for high rate sulfidogenesis and organic removal was explored to further close the gap of our knowledge on the sulfur cycle-based sewage treatment bioprocess. With thiosulfate as the electron acceptor, the sulfidogenic rate in the UASB rector is 105.6 mg S/L/h with the sludge yield of only 0.044 g MLVSS/g CODsubstrate. Thus providing sufficient electron donors or chemical sources (i.e. HS-) for the downstream autotrophic denitrification or for the cost-effective heavy metal precipitation. Thiosulfate disproportionation was not observed in BTR reactor. High-throughput pyrosequencing analysis reveals that Desulfobulbus and Desulfomicrobium are the predominant thiosulfate-reducing genera and the thiosulfate disproportionation-bacteria were at much lower genus level. The specific thiosulfate-reducer i.e. Dethiosulfatibacter which could utilize thiosulfate but not sulfate as the electron acceptor was also identified. Batch testing results indicate that the sulfidogenic activity on thiosulfate was 1.5 times that on sulfate. The optimal pH for BTR activity was between 7.0 and 8.0, a typical pH range of the municipal sewage. Thiosulfate can be efficiently recovered in the sulfide-driven denitritation reactor enriched with abundant sulfide-oxidizing genera (mainly including Thiobacillus and Sulfurimonas). Finally, a conceptual model of the sulfur cycle based on the biotransformation between thiosulfate and sulfide was established, offering new insights into the sustainable SBAP with sludge minimization.


Subject(s)
Sewage , Thiosulfates , Bioreactors , Denitrification , Electrons , Oxidation-Reduction , Sulfur
8.
Chemosphere ; 226: 825-833, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30974375

ABSTRACT

A sulfur cycle-driven bioprocess was developed for co-treatment wet flue gas desulfurization wastes with municipal sewage, as a result of sludge minimization. In this process, organics removal (one of the main objectives in sewage treatment) is closely associated with biological sulfate/sulfite reduction (BSR). In the previous studies, both the pros and corns of sulfite (SO32-) in microbial activities were demonstrated. In this study, we are motivated to unveil the detailed role of SO32- in organic compound removal in the sulfur conversion-associated process. In addition, the effect of internal recirculation (IR) of UASB reactor was also explored. The results demonstrated that sulfite does inhibit the organic removal rate via depressing the acetate oxidation to inorganic carbon. And the inhibition is reversible when influent sulfite concentration decreased from 400 to 132 mg S/L, corresponding to the relative sulfate/sulfite-reducing genera increased from 18.66 to 38.62%. And the fermenting-related bacteria significantly decreased when an internal recirculation was employed for the UASB reactor. The results of this study could shed light on the understanding of the roles of sulfite and IR in organic compound removal performance and microbial community structures in BSR, which could be in turn beneficial to optimize the organic removal capacity of the sulfur bionconversion-concerning sewage treatment technology.


Subject(s)
Biodegradation, Environmental , Organic Chemicals/isolation & purification , Sulfites/pharmacology , Sulfur/chemistry , Wastewater/chemistry , Water Purification/methods , Bacteria/metabolism , Bioreactors/microbiology , Microbiota , Oxidation-Reduction , Sewage/chemistry , Sulfites/chemistry
9.
Chemosphere ; 221: 37-44, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30634147

ABSTRACT

The biological sulfate reduction (BSR) plays a critical role in the organic compound removal in the sulfur bioconversion-associated sewage treatment process. The soluble microbial products (SMP) are the major components of residual organic compounds in the secondary treatment effluent and its presence directly affects treatment capacity. In addition, the SMP could be one of the available organic substrates and be utilized as an electron donor in the bioreactions. However, the SMP formation and utilization in the BSR are poorly understood. Herein, the BSR activities and SMP generation/utilization were simultaneously investigated under different conditions, i.e. pH, temperature and ratio of organic carbon (C) to sulfur (S). The role of SMP as the electron donor for BSR was also identified. The higher BSR activities and rapid SMP synthesis were found under neutral and alkaline conditions, but the SMP utilization as the electron donor is not favorable at pH 7.0. The BSR activity became higher and more SMP was synthesized by raising the temperature. The ratio of C to S rarely affected the sulfidogenic activity but has an effect on the net SMP generation (total SMP generation - SMP consumption by SBR as the electron donor). The lower ratio of C/S could result in the low residual SMP level in the reactor. And the SMP-induced BSR activity was higher under the acid and alkaline conditions compared with the neutral condition.


Subject(s)
Refuse Disposal/methods , Sulfates/metabolism , Bacteria/metabolism , Oxidation-Reduction , Sewage/chemistry , Sewage/microbiology , Temperature
10.
Chemosphere ; 208: 793-799, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29906753

ABSTRACT

To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO3- → NO2-) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S2O32--S/NO3--N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S2O32--S/NO3--N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m3 in the anammox-SBR. At HRT of 30 min, the NO3- removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO2- → N2O → N2), theoretically no N2O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions.


Subject(s)
Denitrification , Nitrogen/chemistry , Sewage/chemistry , Thiosulfates/chemistry , Anaerobiosis , Bioreactors , Feasibility Studies , Nitrates/chemistry , Nitrites/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...