Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 15(1): 2355971, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38745468

ABSTRACT

The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.


Subject(s)
Brain , Fish Diseases , Macrophages , Nodaviridae , RNA Virus Infections , Animals , Macrophages/immunology , Macrophages/virology , Fish Diseases/virology , Fish Diseases/immunology , Brain/virology , Brain/immunology , Brain/pathology , Nodaviridae/physiology , RNA Virus Infections/immunology , RNA Virus Infections/virology , Chemokine CXCL11 , Receptors, CXCR3/metabolism , Bass/immunology , Bass/virology , Signal Transduction , Cytokines/metabolism , Cytokines/immunology , Fish Proteins/immunology , Fish Proteins/genetics
2.
Sci China Life Sci ; 67(4): 733-744, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38388846

ABSTRACT

The origin of T cells in the teleost's brain is unclear. While viewing the central nervous system (CNS) as immune privileged has been widely accepted, previous studies suggest that T cells residing in the thymus but not in the spleen of the teleost play an essential role in communicating with the peripheral organs. Here, we identified nine T cell subpopulations in the thymus and spleen of orange-spotted grouper (Epinephelus coioices) through single-cell RNA-sequencing analysis. After viral CNS infection with red-spotted grouper nervous necrosis virus (RGNNV), the number of slc43a2+ T cells synchronously increased in the spleen and brain. During the infection tests in asplenic zebrafish (tlx1▲ zebrafish model), no increase in the number of slc43a2+ T cells was observed in the brain. Single-cell transcriptomic analysis indicated that slc43a2+ T cells mature and functionally differentiate within the spleen and then migrate into the brain to trigger an immune response. This study suggests a novel route for T cell migration from the spleen to the brain during viral infection in fish.


Subject(s)
Fish Diseases , Nodaviridae , Animals , Immunity, Innate , Spleen , Zebrafish , Amino Acid Sequence , Sequence Alignment , T-Lymphocytes , Brain , Nodaviridae/physiology , Fish Proteins/genetics
3.
Angew Chem Int Ed Engl ; 59(40): 17461-17466, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32588510

ABSTRACT

Elucidating the effects of crystallization-induced blue-shift emission of a newly synthesized di-boron complex (DBC) by enhanced photoluminescence (PL) and electrochemiluminescence (ECL) in the annihilation pathway was realized for the first time. The 57 nm blue-shift and great enhancement in the crystalline lattice relative to the DBC solution were attributed to the restriction of intramolecular rotation (RIR) and confirmed by PL imaging, X-ray diffraction, as well as DFT calculations. It was discovered that ECL at crystalline film/solution interfaces can be further enhanced by means of both co-reactant route and RIR. The RIR contributions with co-reactant increased ECL up to 5 times more. Very interestingly, the co-reactant system was found to give off a red-shifted light emission. Mechanistic studies reveal that a difference between location of the ECL in the co-reactant route and that in the annihilation pathway leads to an alternative emission wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...