Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Antibiotics (Basel) ; 13(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927194

ABSTRACT

The emergence of carbapenem-resistant Gram-negative pathogens presents a clinical challenge in infection treatment, prompting the repurposing of existing drugs as an essential strategy to address this crisis. Although the anticancer drug 5-fluorouracil (5-FU) has been recognized for its antibacterial properties, its mechanisms are not fully understood. Here, we found that the minimal inhibitory concentration (MIC) of 5-FU against Escherichia coli was 32-64 µg/mL, including strains carrying blaNDM-5, which confers resistance to carbapenems. We further elucidated the antibacterial mechanism of 5-FU against E. coli by using genetic and biochemical analyses. We revealed that the mutation of uracil phosphoribosyltransferase-encoding gene upp increased the MIC of 5-FU against E. coli by 32-fold, indicating the role of the upp gene in 5-FU resistance. Additionally, transcriptomic analysis of E. coli treated with 5-FU at 8 µg/mL and 32 µg/mL identified 602 and 1082 differentially expressed genes involved in carbon and nucleic acid metabolism, DNA replication, and repair pathways. The biochemical assays showed that 5-FU induced bacterial DNA damage, significantly increased intracellular ATP levels and the NAD+/NADH ratio, and promoted reactive oxygen species (ROS) production. These findings suggested that 5-FU may exert antibacterial effects on E. coli through multiple pathways, laying the groundwork for its further development as a therapeutic candidate against carbapenem-resistant bacterial infections.

2.
Blood Adv ; 8(7): 1587-1599, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38170757

ABSTRACT

ABSTRACT: Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive subtype of lymphoma with clinical and biological heterogeneity. The International Prognostic Index (IPI) shows great prognostic capability in the era of rituximab, but the biological signatures of IPI remain to be discovered. In this study, we analyzed the clinical data in a large cohort of 2592 patients with newly diagnosed DLBCL. Among them, 1233 underwent DNA sequencing for oncogenic mutations, and 487 patients underwent RNA sequencing for lymphoma microenvironment (LME) alterations. Based on IPI scores, patients were categorized into 4 distinct groups, with 5-year overall survival of 41.6%, 55.3%, 71.7%, and 89.7%, respectively. MCD-like subtype was associated with age of >60 years, multiple extranodal involvement, elevated serum lactate dehydrogenase (LDH), and IPI scores ranging from 2 to 5, whereas ST2-like subtype showed an opposite trend. Patients with EZB-like MYC+ and TP53Mut subtypes exhibited poor clinical outcome independent of the IPI; integrating TP53Mut into IPI could better distinguish patients with dismal survival. The EZB-like MYC-, BN2-like, N1-like, and MCD-like subtypes had inferior prognosis in patients with IPI scores of ≥2, indicating necessity for enhanced treatment. Regarding LME categories, the germinal center-like LME was more prevalent in patients with normal LDH and IPI scores of 0 to 1. The mesenchymal LME served as an independent protective factor, whereas the germinal center-like, inflammatory, and depleted LME categories correlated with inferior prognosis for IPI scores of 2 to 5. In summary, our work explored the biological signatures of IPI, thus providing useful rationale for future optimization of the IPI-based treatment strategies with multi-omics information in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Middle Aged , Prognosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Rituximab/therapeutic use , Germinal Center/pathology , Tumor Microenvironment
4.
Signal Transduct Target Ther ; 8(1): 381, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37798292

ABSTRACT

TP53 mutation (TP53mut) occurs in 10-20% of diffuse large B-cell lymphoma (DLBCL) cases and serves as an unfavorable biomarker of DLBCL progression. It confers resistance to immunochemotherapy, high-dose chemotherapy, autologous stem cell transplantation, and anti-CD19 chimeric antigen receptor T-cell therapy. Therapeutic targeting of TP53mut remains a significant challenge in DLBCL treatment. Here we assessed TP53mut in 667 patients with newly diagnosed DLBCL, including 576 patients treated with immunochemotherapy rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 91 patients with decitabine plus R-CHOP (DR-CHOP, NCT02951728 and NCT04025593). TP53mut independently predicted an inferior prognosis in R-CHOP-treated DLBCL, although this could be mitigated by DR-CHOP treatment. In TP53mut patients, multiple viral regulation pathways were repressed, resulting in the inhibition of immune modulation, as revealed by gene set enrichment analysis. TP53mut DLBCL exhibited increased methyltransferase SUV39H1 expression and H3K9 trimethylation (H3K9me3), contributing to repression of endogenous retroviruses (ERVs) and immunosuppressive tumor microenvironment. In TP53mut DLBCL cell lines, decitabine down-regulated SUV39H1, inhibited H3K9me3 occupancy on ERVs, and triggered ERV expression, thereby unleashing interferons program and CD4+T/CD8+T cell activation. Molecular silencing of SUV39H1 significantly abrogated decitabine-induced H3K9me3 inhibition and ERV expression. In TP53mut patient-derived xenograft models and TP53mut patients, the anti-tumor effect was improved upon the use of combined treatment of decitabine and doxorubicin via SUV39H1-H3K9me3-ERVs axis. Collectively, our findings highlight an ERV regulatory circuitry in TP53mut DLBCL and the crucial roles ERVs for epigenetically reprogramming tumor microenvironment for treating TP53mut-driven cancers.


Subject(s)
Endogenous Retroviruses , Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Transplantation, Autologous , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Rituximab/pharmacology , Rituximab/genetics , Doxorubicin/pharmacology , Epigenesis, Genetic/genetics , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Cancer Cell ; 41(10): 1705-1716.e5, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37774697

ABSTRACT

We report the results of GUIDANCE-01 (NCT04025593), a randomized, phase II trial of R-CHOP alone or combined with targeted agents (R-CHOP-X) guided by genetic subtyping of newly diagnosed, intermediate-risk, or high-risk diffuse large B cell lymphoma (DLBCL). A total of 128 patients were randomized 1:1 to receive R-CHOP-X or R-CHOP. The study achieved the primary endpoint, showing significantly higher complete response rate with R-CHOP-X than R-CHOP (88% vs. 66%, p = 0.003), with overall response rate of 92% vs. 73% (p = 0.005). Two-year progression-free survival rates were 88% vs. 63% (p < 0.001), and 2-year overall survival rates were 94% vs. 77% (p = 0.001). Meanwhile, post hoc RNA-sequencing validated our simplified genetic subtyping algorithm and previously established lymphoma microenvironment subtypes. Our findings highlight the efficacy and safety of R-CHOP-X, a mechanism-based tailored therapy, which dually targeted genetic and microenvironmental alterations in patients with newly diagnosed DLBCL.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1621-1632, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37154327

ABSTRACT

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound ß-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between ß-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. ß-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that ß-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of ß-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined ß-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Tigecycline/pharmacology , Escherichia coli/metabolism , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Reactive Oxygen Species/therapeutic use , Plasmids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Bacteria/genetics , Microbial Sensitivity Tests
7.
Signal Transduct Target Ther ; 8(1): 145, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032379

ABSTRACT

Genetic classification helps to disclose molecular heterogeneity and therapeutic implications in diffuse large B-cell lymphoma (DLBCL). Using whole exome/genome sequencing, RNA-sequencing, and fluorescence in situ hybridization in 337 newly diagnosed DLBCL patients, we established a simplified 38-gene algorithm (termed 'LymphPlex') based on the information on mutations of 35 genes and rearrangements of three genes (BCL2, BCL6, and MYC), identifying seven distinct genetic subtypes: TP53Mut (TP53 mutations), MCD-like (MYD88, CD79B, PIM1, MPEG1, BTG1, TBL1XR1, PRDM1, IRF4 mutations), BN2-like (BCL6 fusion, NOTCH2, CD70, DTX1, BTG2, TNFAIP3, CCND3 mutations), N1-like (NOTCH1 mutations), EZB-like (BCL2 fusion, EZH2, TNFRSF14, KMT2D, B2M, FAS, CREBBP, ARID1A, EP300, CIITA, STAT6, GNA13 mutations, with or without MYC rearrangement), and ST2-like (SGK1, TET2, SOCS1, DDX3X, ZFP36L1, DUSP2, STAT3, IRF8 mutations). Extended validation of 1001 DLBCL patients revealed clinical relevance and biological signature of each genetic subtype. TP53Mut subtype showed poor prognosis, characterized by p53 signaling dysregulation, immune deficiency, and PI3K activation. MCD-like subtype was associated with poor prognosis, activated B-cell (ABC) origin, BCL2/MYC double-expression, and NF-κB activation. BN2-like subtype showed favorable outcome within ABC-DLBCL and featured with NF-κB activation. N1-like and EZB-like subtypes were predominated by ABC-DLBCL and germinal center B-cell (GCB)-DLBCL, respectively. EZB-like-MYC+ subtype was characterized by an immunosuppressive tumor microenvironment, while EZB-like-MYC- subtype by NOTCH activation. ST2-like subtype showed favorable outcome within GCB-DLBCL and featured with stromal-1 modulation. Genetic subtype-guided targeted agents achieved encouraging clinical response when combined with immunochemotherapy. Collectively, LymphPlex provided high efficacy and feasibility, representing a step forward to the mechanism-based targeted therapy in DLBCL.


Subject(s)
Immediate-Early Proteins , Lymphoma, Large B-Cell, Diffuse , Humans , NF-kappa B/genetics , In Situ Hybridization, Fluorescence , Interleukin-1 Receptor-Like 1 Protein/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Microenvironment , Butyrate Response Factor 1/genetics , Immediate-Early Proteins/genetics , Immediate-Early Proteins/therapeutic use , Tumor Suppressor Proteins/genetics
8.
Asian J Surg ; 46(1): 458-464, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35753912

ABSTRACT

BACKGROUND: Currently, the lack of clinically accurate measurement and evaluation methods for breast asymmetry has considerably limited the use of autologous fat grafting in the correction of breast asymmetry. OBJECTIVE: This study calculated the volume difference in the bilateral breasts by three-dimensional (3D) laser scanning technology, established a bridge between digitalization and surgery to guide the correction of breast asymmetry by autologous fat grafting, and evaluated the surgical effect. METHODS: In the experimental group (3D group), the measurement range was defined by standardized methods, the algorithm to calculate the volume difference in the bilateral breasts was determined by the established software instructions, and the volume of intraoperative autologous fat grafting was guided by personalized data. In the control group, the volume of intraoperative autologous fat grafting was determined based on the surgeon's visual assessment and surgical experience. RESULTS: The volume difference in the bilateral breasts was less at 12 months after surgery (P < 0.05), the satisfaction of patients was higher (P < 0.05), and the reoperation rate was lower (P < 0.05). The incidence of postoperative complications was low in both groups (P > 0.05). CONCLUSIONS: 3D laser scanning technology can be used as a bridge between digitalization and surgery to significantly improve the surgical effect of autologous fat grafting in the correction of breast asymmetry, with high patient satisfaction and high clinical application value.

9.
Article in English | MEDLINE | ID: mdl-36554909

ABSTRACT

Autism spectrum disorder (ASD) seriously affects children's health. In our previous study, we isolated and identified a bacterium (Lactobacillus plantarum strain 6-1) that is resistant to propionic acid (PA), which has been reported to play a significant role in the formation of ASD. In order to elucidate the mechanism of the resistance to PA, this study investigated the change in the metabolic and proteomic profile of L. plantarum strain 6-1 in the presence and absence of PA. The results show that 967 and 1078 proteins were specifically identified in the absence and the presence of PA, respectively, while 616 proteins were found under both conditions. Gene ontology enrichment analysis of 130 differentially expressed proteins accumulated in the presence and absence of PA indicated that most of the proteins belong to biological processes, cellular components, and molecular functions. Pathway enrichment analysis showed a great reduction in the metabolic pathway-related proteins when this resistant bacterium was exposed to PA compared to the control. Furthermore, there was an obvious difference in protein-protein interaction networks in the presence and the absence of propionic acid. In addition, there was a change in the metabolic profile of L. plantarum strain 6-1 when this bacterium was exposed to PA compared to the control, while six peaks at 696.46, 1543.022, 1905.241, 2004.277, 2037.374, and 2069.348 m/z disappeared. Overall, the results could help us to understand the mechanism of the resistance of gut bacteria to PA, which will provide a new insight for us to use PA-resistant bacteria to prevent the development of ASD in children.


Subject(s)
Autism Spectrum Disorder , Lactobacillus plantarum , Child , Humans , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Proteomics/methods , Propionates/pharmacology
10.
Antibiotics (Basel) ; 11(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36009937

ABSTRACT

The emergence of the mobile tigecycline-resistance gene, tet(X4), poses a significant threat to public health. To investigate the prevalence and genetic characteristics of the tet(X4)-positive Escherichia coli in humans, 1101 human stool samples were collected from a tertiary class-A hospital in Beijing, China, in 2019. Eight E. coli isolates that were positive for tet(X4) were identified from clinical departments of oncology (n = 3), hepatology (n = 2), nephrology (n = 1), urology (n = 1), and general surgery (n = 1). They exhibited resistance to multiple antibiotics, including tigecycline, but remained susceptible to meropenem and polymyxin B. A phylogenetic analysis revealed that the clonal spread of four tet(X4)-positive E. coli from different periods of time or departments existed in this hospital, and three isolates were phylogenetically close to the tet(X4)-positive E. coli from animals and the environment. All tet(X4)-positive E. coli isolates contained the IncX1-plasmid replicon. Three isolates successfully transferred their tigecycline resistance to the recipient strain, C600, demonstrating that the plasmid-mediated horizontal gene transfer constitutes another critical mechanism for transmitting tet(X4). Notably, all tet(X4)-bearing plasmids identified in this study had a high similarity to several plasmids recovered from animal-derived strains. Our findings revealed the importance of both the clonal spread and horizontal gene transfer in the spread of tet(X4) within human clinics and between different sources.

11.
Biomark Res ; 10(1): 51, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879731

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma with variable clinical outcomes and prediction of prognosis remains important for long-term remission. We performed serial serum soluble interleukin-2 receptor (sIL-2R) measurement pretreatment and before each cycle of the treatment in 599 patients with de novo DLBCL. Genomic and transcriptomic features were analyzed by 223 DNA- and 227 RNA-sequencing, respectively. Applying the cut-off value to sIL-2R pretreatment and cycle 2 (C2) level, patients were classified into FINE subtype (pretreatment low level) with good prognosis, RES subtype (pretreatment high level and C2 low level) with intermediate prognosis, and RET subtype (pretreatment high level and C2 high level) with poor prognosis, independent of International Prognostic Index. In "others" genetic subtype, dynamic change of sIL-2R showed prognostic significance and genetic features. Compared with FINE subtype, RES subtype had increased ARID1A and MYD88 mutations, and RET subtype had increased KMT2D, LYN and SOCS1 mutations. RES and RET subtypes showed significant enrichment in oncogenic pathways, such as ERK, NF-κB, JAK-STAT, and immune-associated pathways. As for tumor microenvironment, RES subtype exhibited increased recruiting activity of CD8 + T, T helper 1, and natural killer cells, and RET subtype with increased recruiting activity of CD4 + T and regulatory T cells in silico. There was a positive correlation between transcripts of IL-2R and immune checkpoint expressions including PD-1 and CTLA-4. Our findings identified that dynamic change of sIL-2R, with this simple and easy detection method in peripheral blood, had long-term prognostic effect and specific relation to microenvironment alterations in DLBCL.

13.
Viruses ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: mdl-35632829

ABSTRACT

Phage therapy is a promising biocontrol management on plant diseases caused by bacterial pathogens due to its specificity, efficiency and environmental friendliness. The emergence of natural phage-resistant bacteria hinders the application of phage therapy. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of the devastating bacterial leaf blight disease of rice. Here, we obtained a spontaneous mutant C2R of an Xoo strain C2 showing strong resistance to the lytic phage X2. Analysis of the C2R genome found that the CDS2289 gene encoding glycosyltransferase acquired a frameshift mutation at the 180th nucleotide site, which also leads to a premature stop mutation at the 142nd amino acid. This mutation confers the inhibition of phage adsorption through the changes in lipopolysaccharide production and structure and bacterial surface morphology. Interestingly, glycosyltransferase-deficient C2R and an insertional mutant k2289 also showed reduced virulence, suggesting the trade-off costs of phage resistance. In summary, this study highlights the role of glycosyltransferase in interactions among pathogenic bacteria, phages and plant hosts, which provide insights into balanced coevolution from environmental perspectives.


Subject(s)
Bacteriophages , Siphoviridae , Bacteriophages/genetics , Glycosyltransferases/genetics , Lipopolysaccharides , Mutation , Xanthomonas
14.
Sci Total Environ ; 826: 154010, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35218833

ABSTRACT

BACKGROUND: Mobile tigecycline-resistance gene tet(X) variants have emerged as diverse pathogens from animal, human as well as their associated environments, which could potentially threaten public health. The insertion sequence, ISCR2, carries tet(X4) for horizontal transfer by rolling-cycle (RC) transposition. However, the diversity of ISCR2 and tet(X4) isolated from different sources is largely unknown. METHODS: The tet(X4)-carrying isolates were collected from human and livestock in several multiple regions of China. The whole genomic sequences of these isolates were either obtained from NCBI GenBank or determined by Illumina Hiseq 2500 and the MinION platform. The intact transposon region, ISCR2-tet(X4)-ISCR2, observed in a small number of isolates as the reference sequence to construct the transposon phylogeny. The diversity of the genetic environments of all ISCR2-tet(X4) elements were analyzed. RESULTS: A 2760-bp element encompassing the tet(X4)-hydrolase-encoding gene, catD, located between two ISCR2 elements was highly conserved in all isolates and could form an RC transposable unit (RC-TU). ISCR2 could also capture more resistance genes and formed a larger RC-TU base on RC transposition. However, the ISCR2-mediated RC-TUs were constantly truncated and inserted by other IS elements, indicating frequent recombination events. Of these elements, IS26 disrupted both the upstream and downstream ISCR2-mediated RC-TUs, indicating that IS26 captured tet(X4), thus leading to a wider spread of tet(X4). CONCLUSIONS: These results confirmed the critical role of ISCR2 for dissemination and co-transmission of tet(X4) and other resistance genes. More effort is needed to monitor the variation tendencies of tet(X4)-carrying mobile elements and determine the driving factors for disseminating transferable tigecycline resistance.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Animals , Escherichia coli/genetics , Microbial Sensitivity Tests , Plasmids , Tigecycline
15.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35215761

ABSTRACT

Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.


Subject(s)
Bacteriophages/genetics , Comamonadaceae/virology , Endopeptidases/metabolism , Genome, Viral/genetics , Amino Acid Sequence , Bacteriolysis , Bacteriophages/enzymology , Bacteriophages/physiology , Computational Biology , Endopeptidases/genetics , Escherichia coli/virology , Sequence Alignment , Viral Proteins/genetics , Viral Proteins/metabolism
16.
Microbiol Spectr ; 10(1): e0108121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138117

ABSTRACT

The recently emerged plasmid-mediated tigecycline resistance gene tet(X4) has mainly been detected in Escherichia coli but never in Klebsiella pneumoniae. Herein, we identified a clinical K. pneumoniae isolate that harbored the tet(X4) gene located on a non-self-transferable IncFII-type plasmid, which could be cotransferred with a conjugative plasmid to E. coli C600. The extending of bacterial species carrying tet(X4) suggested the increasing risk of spreading mobile tigecycline resistance genes among important pathogens in clinical settings. IMPORTANCE Tigecycline, the first member of glycylcycline class antibiotic, is often considered one of the effective antibiotics against multidrug-resistant (MDR) infections. However, the emergence and wide distribution of two novel plasmid-mediated tigecycline resistance genes, tet(X3) and tet(X4), pose a great threat to the clinical use of tigecycline. The newly tet(X) variants have been identified from multiple different bacterial species, but the tet(X) variant in the Klebsiella pneumoniae strain has been reported only once before. In this study, we identified a clinical K. pneumoniae isolate that harbored a non-self-transferable tet(X4)-carrying plasmid. This plasmid has never been found in other tet(X4)-harboring strains and could be cotransferred with a conjugative plasmid to the recipient strain. Our findings indicate that the tet(X4) gene breaks through its original bacterial species and spreads to some important nosocomial pathogens, which posed a serious threat to public health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Plasmids/genetics , Tigecycline/pharmacology , Conjugation, Genetic , Escherichia coli/genetics , Humans , Klebsiella Infections/microbiology
18.
Plants (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34834750

ABSTRACT

Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.

19.
Materials (Basel) ; 14(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34639886

ABSTRACT

Autism spectrum disorder (ASD) seriously affects children's health, while the gut microbiome has been widely hypothesized to be involved in the regulation of ASD behavior. This study investigated and compared the number, diversity, and population structure of gut microbiota between healthy and ASD children and their susceptibility to zinc oxide nanoparticles (ZnONPs) based on the measurement of live cell number, living/dead bacterial staining test, flow cytometry observation and bacterial community analysis using 16S rRNA gene amplicon sequencing. The result of this present study revealed that ASD children not only significantly reduced the live cell number and the community diversity of gut bacteria, but also changed the gut bacterial community composition compared to the healthy children. In addition, this result revealed that ZnONPs significantly reduced the number of live bacterial cells in the gut of healthy children, but not in that of ASD children. In contrast, ZnONPs generally increased the gut bacterial community diversity in both ASD and healthy children, while a greater increase was found in ASD children than that of healthy children. Furthermore, this study successfully isolated and identified some representative nanoparticle-resistant bacteria based on the color, shape, and edge of colony as well as the 16S rDNA sequence analysis. The community of nanoparticle-resistant bacteria differed in between healthy and ASD children. Indeed, the representative strains 6-1, 6-2, 6-3 and 6-4 from healthy children were identified as Bacillus anthracis, Escherichia coli, Bacillus cereus and Escherichia coli with sequence similarity of 97.86%, 99.86%, 99.03% and 99.65%, respectively, while the representative strains 8-1, 8-2 and 8-3 from ASD children were identified as Bacillus cereus, with sequence similarities of 99.58%, 99.72% and 99.72%, respectively. Overall, this study demonstrated that ZnONPs caused a change in number, diversity, and species composition of gut bacteria, but differed in healthy and ASD children.

20.
Plants (Basel) ; 10(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34685892

ABSTRACT

Decline disease causes serious damage and rapid death in bayberry, an important fruit tree in south China, but the cause of this disease remains unclear. The aim of this study was to investigate soil quality, microbial community structure and metabolites of rhizosphere soil samples from healthy and diseased trees. The results revealed a significant difference between healthy and diseased bayberry in soil properties, microbial community structure and metabolites. Indeed, the decline disease caused a 78.24% and 78.98% increase in Rhizomicrobium and Cladophialophora, but a 28.60%, 57.18%, 38.84% and 68.25% reduction in Acidothermus, Mortierella, Trichoderma and Geminibasidium, respectively, compared with healthy trees, based on 16S and ITS amplicon sequencing of soil microflora. Furthermore, redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of bacterial and fungal communities included pH, organic matter, magnesium, available phosphorus, nitrogen and calcium, which exhibited a greater influence in bacterial communities than in fungal communities. In addition, there was a high correlation between the changes in microbial community structure and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that the healthy and diseased samples differed over six metabolic pathways, including thiamine metabolism, phenylalanine-tyrosine-tryptophan biosynthesis, valine-leucine-isoleucine biosynthesis, phenylalanine metabolism, fatty acid biosynthesis and fatty acid metabolism, where the diseased samples showed a 234.67% and 1007.80% increase in palatinitol and cytidine, respectively, and a 17.37-8.74% reduction in the other 40 metabolites compared to the healthy samples. Overall, these results revealed significant changes caused by decline disease in the chemical properties, microbiota and secondary metabolites of the rhizosphere soils, which provide new insights for understanding the cause of this bayberry disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...