Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37106967

ABSTRACT

The Chinese alligator (Alligator sinensis), found only in a small region in southeastern Anhui Province, is listed as critically endangered (CR) by the International Union for Conservation of Nature (IUCN) due to its current declining population trend. Any abnormalities in the physical properties of an egg can decrease the hatching rate. In particular, eggshells play an essential role in embryo development, motivating us to analyze the microstructures of the eggshells of Chinese alligators. In this study, we categorized the eggshells into two groups, based on the hatching rates, and analyzed the relationship between the eggshell parameters (eggshell thickness, calcium content, and number of pores in erosion craters) and the hatching rate, as well as the relationships between the eggshell parameters. We found that the shells of the eggs with high hatching rates were thicker than those of the eggs with low hatching rates. There were also fewer erosion-crater pores on the surfaces of the eggs with high hatching rates than on the surfaces of the eggs with low hatching rates. Moreover, the shell Ca content was significantly higher in the eggs with high hatching rates than in the eggs with low hatching rates. Cluster modeling indicated that the highest hatching rate occurred when the eggshell thickness was 200-380 µm and there were 1-12 pores. These results suggest that eggs with adequate Ca contents, thicker shells, and less air permeability are more likely to hatch. Furthermore, our findings can inform future studies, which will be vital for the survival of the critically endangered Chinese alligator species.

2.
J Chromatogr A ; 1137(2): 145-52, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17126843

ABSTRACT

In the present study, the performance and separation characteristics of eight macroporous resins for the separation of luteolin (LU) from pigeonpea leaves extracts have been evaluated. The adsorption and desorption properties of LU on macroporous resins including AB-8, NKA-9, NKA-2, D3520, D101, H1020, H103 and AL-2 have been compared. AL-2 resin offers the best adsorption and desorption capacity for LU than other resins based on the research results, and its adsorption data at 25 degrees C fit best to the Freundlich isotherm. Dynamic adsorption and desorption experiments have been carried out with the column packed by AL-2 resin to optimize the separation process of LU from pigeonpea leaves extracts. The optimum parameters for adsorption were sample solution LU concentration 65.5 microg/ml, pH 5, processing volume 3 BV, flow rate 1.5BV/h, temperature 25 degrees C; for desorption were elution solvent ethanol-water (50:50, v/v) 2 BV and followed by ethanol-water (60:40, v/v) 2 BV, and flow rate 1BV/h. After treated with AL-2 resin, the LU content in the product was increased 19.8-fold from 0.129% to 2.55%, with a recovery yield of 78.54%. The results showed that AL-2 resin revealed a good ability to separate LU. Therefore, we conclude that results in this study may provide scientific references for the large-scale LU production from pigeonpea or other plants extracts.


Subject(s)
Cajanus/chemistry , Luteolin/isolation & purification , Plant Leaves/chemistry , Resins, Synthetic/chemistry , Adsorption , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...