Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 905: 167290, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742948

ABSTRACT

Using biochar in agriculture to enhance soil carbon storage and productivity has been recognized as an effective means of carbon sequestration. However, the effects on crop yield and soil carbon and nitrogen can vary depending on environmental conditions, field management, and biochar conditions. Thus, we conducted a meta-analysis to identify the factors contributing to these inconsistencies. We found that biochar application significantly increased soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidized carbon (EOC), particulate organic carbon (POC), total nitrogen (TN), and the C:N ratio in topsoil (0-20 cm) and crop yields. Biochar was most effective in tropical regions, increasing SOC, Soil TN, and crop yield the most, with relatively moderate pyrolysis temperatures (550-650 °C) more conducive to SOC accumulation and relatively low pyrolysis temperatures (<350 °C) more conducive to increasing soil carbon components and crop yields. Biochar made from manure effectively increased soil carbon components and TN. Soil with low fertility (original SOC < 5 g kg-1; original TN < 0.6 g kg-1), coarse texture, and acidity (pH < 5.5) showed more effective results. However, biochar application rates should not be too high and should be combined with appropriate nitrogen fertilizer. And biochar application had long-term positive effects on soil carbon storage and crop yield. Overall, we recommend using small amounts of biochar with lower pyrolysis temperatures in soils with low fertility, coarse texture, and tropical regions for optimal economic and environmental benefits.


Subject(s)
Carbon , Soil , Charcoal/pharmacology , Agriculture/methods , Fertilizers , Nitrogen/analysis
2.
Food Funct ; 14(3): 1710-1725, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36722874

ABSTRACT

The prevalence of hyperuricemia (HUA) has been rising, and it is typically accompanied by renal injury and intestinal flora disorder, leading to a non-negligible health crisis. Ferulic acid (FA), as a familiar polyphenol, has been proven to exert anti-hyperuricemic properties via inhibiting uric acid (UA) synthesis; however, the detailed underlying mechanisms remain unclear. The aim of this study was to explore the regulatory effect of FA on UA excretion as a potential strategy for reducing UA levels, and the comorbidities of HUA. FA treatment downregulated the expression of urate absorption transporter genes and repressed the toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway in UA-stimulated HK-2 cells. To examine these effects in vivo, FA or allopurinol (positive control) was given to rats with HUA induced by a high-fructose/fat diet (HFFD) for 20 weeks. FA markedly decreased the serum UA, blood urea nitrogen, and creatinine levels. The expression of urate absorption transporters was downregulated, whereas the expression of secretion transporters was upregulated in the kidneys and intestines of FA-treated HUA rats. Additionally, FA mitigated renal oxidative stress, and suppressed the activation of the TLR4/NF-κB pathway and the downstream inflammatory response-related markers in the kidneys. Moreover, FA remodeled the composition of the gut microbiota, characterized by an increase in beneficial bacteria (e.g., Lactobacillus and Ruminococcus) and a decrease in pathogenic bacteria (e.g., Bacteroides). In conclusion, our study validated FA as an effective nutrient to ameliorate HFFD-induced HUA, suggesting its potential to mitigate the HUA-associated renal impairment and intestinal microbiota disturbance.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Rats , Animals , Hyperuricemia/metabolism , Uric Acid , Toll-Like Receptor 4/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Fructose/metabolism , Kidney , Dietary Supplements , Diet
3.
Foods ; 11(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36496749

ABSTRACT

Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K-Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote ß-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin.

4.
Foods ; 11(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230090

ABSTRACT

With the increase in alcohol consumption, more and more people are suffering from alcoholic liver disease (ALD). Therefore, it is necessary to elaborate the pathogenesis of ALD from the aspects of alcohol metabolism and harm. In this study, we established an alcoholic liver injury model in vitro by inducing L02 cells with different concentration of ethanol and acetaldehyde. Results showed that the metabolism of ethanol can promote the content of ROS, MDA, TNF-α, IL-6, and caspase 3, causing oxidative and inflammatory stress and membrane permeability changes. However, unmetabolized ethanol and acetaldehyde had little effect on cell membrane permeability and inflammation, indicating that ethanol metabolites were the main reason for cell membrane damage. We also evaluated the effects of amino acids (taurine and methionine), vitamins (E and vitamin D), organic acids (malic acid and citric acid), flavonoids (rutin and quercetin), and phenolic acids (ferulic acid and chlorogenic acid) on alcohol-induced cell membrane damage of L02 cells. Chlorogenic acid, taurine, vitamin E, and citric acid had remarkable effects on improving cell membrane damage. Malic acid, rutin, quercetin, and ferulic acid had obvious therapeutic effects, while vitamin D and methionine had poor therapeutic effects. The relationship between the structure and effect of active ingredients can be further studied to reveal the mechanism of action, and monomers can be combined to explore whether there is a synergistic effect between functional components, in order to provide a certain theoretical basis for the actual study of liver protection.

5.
Front Nutr ; 9: 957321, 2022.
Article in English | MEDLINE | ID: mdl-35967808

ABSTRACT

Exercise (Ex) has been recognized as an effective way of obesity prevention, but it shows a dual effect on the body's antioxidant system. Ferulic acid (FA) is a kind of phenolic acid with well-known antioxidant capacity and numerous health benefits. Therefore, the aim of the study was to compare the antiobesity effect of Ex, FA, and Ex combined with FA (Ex-FA) in vivo and to illustrate the potential mechanisms. Mice were fed a high-fat diet (HFD) with or without administration of Ex, FA, and Ex-FA for 13 weeks. The body weight, antioxidant ability, Ex performance, and lipid profiles in the serum, liver, and skeletal muscle were compared among the groups, and serum metabolomics analysis was conducted. The results showed that Ex, FA, and Ex-FA exhibited a similar effect on body weight management. Ex had a more beneficial function by alleviating HFD-induced dyslipidemia than FA, while FA exerted a more efficient effect in mitigating lipid deposition in the liver and skeletal muscle. Ex-FA showed comprehensive effects in the regulation of the lipid contents in serum, liver, and skeletal muscle, and provoked enhancement effects on antioxidant ability and Ex capacity. Mice administered with Ex, FA, and Ex-FA showed different metabolic profiles, which might be achieved through different metabolic pathways. The findings of this research implied that Ex coupled with FA could become an effective and safe remedy for the management of dietary-induced obesity.

6.
Front Immunol ; 13: 956688, 2022.
Article in English | MEDLINE | ID: mdl-35958617

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has become one of the public health problems globally. The occurrence of NAFLD is usually accompanied by a series of chronic metabolic diseases, with a prevalence rate is 25.24% among adults worldwide. Therefore, NAFLD seriously affects the quality of life in patients and causes a large economic burden. It has been reported that puerarin has the function of lowering the serum lipids, but due to the complexity of NAFLD, the specific mechanism of action has not been clarified. The aim of this study was to evaluate the preventive or ameliorating effects of two doses of puerarin (0.11% and 0.22% in diet) on high-fat and high-fructose diet (HFFD)-induced NAFLD in rats. The rats were fed with HFFD-mixed puerarin for 20 weeks. The results showed that puerarin ameliorated the levels of lipids in the serum and liver. Further exploration of the mechanism found that puerarin ameliorated hepatic lipid accumulation in NAFLD rats by reducing the expression of Srebf1, Chrebp, Acaca, Scd1, Fasn, Acacb, Cd36, Fatp5, Degs1, Plin2, and Apob100 and upregulating the expression of Mttp, Cpt1a, and Pnpla2. At the same time, after administration of puerarin, the levels of antioxidant markers (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased in the serum and liver, and the contents of serum and hepatic inflammatory factors (interleukin-18, interleukins-1ß, and tumor necrosis factor α) were clearly decreased. In addition, puerarin could ameliorate the liver function. Overall, puerarin ameliorated HFFD-induced NAFLD by modulating liver lipid accumulation, liver function, oxidative stress, and inflammation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Fructose , Humans , Inflammation/etiology , Isoflavones , Lipids , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Quality of Life , Rats
7.
Alcohol Alcohol ; 57(6): 776-787, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35922962

ABSTRACT

AIM: This study evaluated the possible protective impact of different vintages of Hongqu rice wines on metabolic syndrome (MetS) in rats induced by high-fat/high-fructose diet (HFFD). METHODS: Rats were randomly divided into six groups and treated with (a) basal diet (13.9 kJ/g); (b) HFFD (20.0% w/w lard and 18.0% fructose, 18.9 kJ/g) and (c-f) HFFD with 3-, 5-, 8- and 15-year-aged Hongqu rice wines (9.96 ml/kg body weight), respectively, at an oral route for 20 weeks. RESULTS: Hongqu rice wines could alleviate HFFD-induced augment of body weight gain and fat accumulation, and the release of pro-inflammatory cytokines. Glycolipid metabolic abnormalities caused by HFFD were ameliorated after Hongqu rice wines consumption by lowering levels of fasting insulin, GSP, HOMA-IR, AUC of OGTT and ITT, and lipid deposition (reduced contents of TG, TC, FFA and LDL-C, and elevated HDL-C level) in the serum and liver, probably via regulating expressions of genes involving in IRS1/PI3K/AKT pathway, LDL-C uptake, fatty acid ß-oxidation, and lipolysis, export and synthesis of TG. In addition, concentrations of MDA and blood pressure markers (ANG-II and ET-1) declined, and activities of antioxidant enzymes (SOD and CAT) were improved in conditions of Hongqu rice wines compared to those in the HFFD group. Eight-year-aged Hongqu rice wine produced a more effective effect on alleviating HFFD-caused MetS among different vintages of Hongqu rice wines. CONCLUSION: To sum up, Hongqu rice wines exhibited ameliorative effects on HFFD-induced MetS in rats based on antiobesity, antihyperlipidemic, antihyperglycemic, antioxidant, anti-inflammatory and potential antihypertensive properties.


Subject(s)
Metabolic Syndrome , Animals , Rats , Antioxidants/metabolism , Body Weight , Cholesterol, LDL/metabolism , Cholesterol, LDL/pharmacology , Diet, High-Fat , Fructose , Liver , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Oryza , Alcoholic Beverages
8.
Front Nutr ; 9: 946556, 2022.
Article in English | MEDLINE | ID: mdl-35845766

ABSTRACT

Ferulic acid is a well-known phenolic acid compound and possesses multiple health-promoting and pharmacological effects. Metabolic syndrome (MetS) and hyperuricemia (HUA) have become health problems worldwide and are closely connected. The aim of this study was to explore the influence of ferulic acid on MetS-related HUA and its underlying mechanisms. Rats were administered high-fructose and high-fat diet (HFFD) with or without ferulic acid (0.05 and 0.1%) for 20 weeks. Intake of HFFD resulted in obesity, hyperglycemia, insulin resistance, and dyslipidemia, which were alleviated by ferulic acid consumption. Treatment of rats with ferulic acid diminished the levels of lipids and inflammatory cytokines and enhanced the activities of antioxidant enzymes in the liver caused by HFFD. Additionally, administration of ferulic acid blocked a HFFD-induced elevation in activities and mRNA expression of enzymes involving in uric acid (UA) synthesis. Molecular docking analysis denoted that ferulic acid bound to the active center of these enzymes, indicative of the potential interaction with each other. These two aspects might partially be responsible for the decrement in serum UA content after ferulic acid ingestion. In conclusion, ferulic acid supplementation ameliorated lipid and glucose metabolic abnormalities, hepatic damage, and UA formation in MetS rats. There was a dose correlation between lipid deposition and UA synthesis-related indicators. These findings implied that ferulic acid could be applied as a promising dietary remedy for the management of MetS-associated HUA.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740108

ABSTRACT

Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. It can cause fatty liver (steatosis), steatohepatitis, fibrosis, cirrhosis, and liver cancer. Alcohol consumption can also disturb the composition of gut microbiota, increasing the composition of harmful microbes and decreasing beneficial ones. Restoring eubiosis or preventing dysbiosis after alcohol consumption is an important strategy in treating ALD. Plant natural products and polyphenolic compounds exert beneficial effects on several metabolic disorders associated with ALD. Natural products and related phytochemicals act through multiple pathways, such as modulating gut microbiota, improving redox stress, and anti-inflammation. In the present review article, we gather information on natural extract and bioactive compounds on the gut-liver axis for the possible treatment of ALD. Supplementation with natural extracts and bioactive compounds promoted the intestinal tight junction, protected against the alcohol-induced gut leakiness and inflammation, and reduced endotoxemia in alcohol-exposed animals. Taken together, natural extracts and bioactive compounds have strong potential against ALD; however, further clinical studies are still needed.

10.
Foods ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34828946

ABSTRACT

Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.

11.
Foods ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34828972

ABSTRACT

Astragalus, a medical and edible plant in China, shows several bioactive properties. However, the role of astragalus in attenuating alcoholic liver disease (ALD) is less clear. The objective of this project is to investigate the improving effect of astragalus saponins (AS) and astragalus polysaccharides (AP), which are the two primary constituents in astragalus on hepatic injury induced by alcohol, and the potential mechanisms of action. Different doses of AS (50 and 100 mg/kg bw) and AP (300 and 600 mg/kg bw) were orally given to alcohol-treated mice for four weeks. The results demonstrated that both AP and AS could reverse the increase of the levels of TC, TG, FFA, and LDL-C in serum, and the decrease of serum HDL-C content, as well as the elevation of hepatic TC and TG levels induced by alcohol. The activities of AST, ALT, ALP, and γ-GT in ALD mice were raised after AP and AS supplementation. The antioxidant markers (SOD, CAT, GSH, and GSH-Px) were obviously augmented and the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and hepatic histological variations were alleviated by AP and AS, which was in line with the levels of oxidative stress-associated genes (Keap1, Nfe2l2, Nqo1, and Hmox1) and inflammation-associated genes (Tlr4, Myd88 and Nfkb1). In addition, AS exerted a more efficient effect than AP and the results presented dose proportionality. Moreover, AS and AP could modulate the intestinal microbiota disturbance induced by alcohol. Overall, AS and AP administration could ameliorate lipid accumulation in the serum and liver, as well as hepatic function, oxidative stress, inflammatory response, and gut flora disorders in mice as a result of alcohol.

12.
J Cancer ; 12(7): 1853-1866, 2021.
Article in English | MEDLINE | ID: mdl-33753984

ABSTRACT

Background: Cancer is a major public problem and poses a long-term impact on patients' life, work, and study. Oats are widely recognized as healthy food and fermented oats were rich in the higher contents of polyphenols. However, the role of fermented oats in cancer remains elusive. Methods: The effect of ethyl acetate subfractions (EASs) from ethanol extracts of oats fermented by Rhizopus oryzae 3.2751 on cancer cells was verified by series experiments in vitro and in vivo. The cell viability, colony formation, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and western blot were determined in vitro. The toxicity of EASs and xenograft mouse model were performed in vivo. Results: MTT assay indicated that EASs interference suppressed the proliferation of four human cancer cells in a dose-dependent manner without a significant impact on two normal cells. EASs (0.2, 0.4, and 0.8 µg/mL) resulted in the G2/M and S phase arrest, apoptosis, depolarization of MMP, and ROS generation in HepG2 cells by flow cytometry. p53, JNK, caspase-9, and caspase-3 were activated and the expression of Bax was promoted, while the expression of Bcl-2 was reduced in HepG2 cells exposed to EASs via western blot. Furthermore, the in vivo study using a xenograft mouse model demonstrated that EASs attenuated the tumor growth with low systemic toxicity. Conclusions: EASs exhibited anti-cancer activities in vitro and in vivo via cell cycle arrest and apoptosis. This finding suggests that polyphenol-enriched composition from fermented oats might become a promising candidate for impeding the development and progression of liver cancer.

13.
J Food Biochem ; 45(2): e13614, 2021 02.
Article in English | MEDLINE | ID: mdl-33470446

ABSTRACT

Primary dysmenorrhea (PD) is one of the most common gynecological disorders among young women. Bergamot is rich in natural bioactive ingredients, which could potentially ameliorate PD. We aimed to investigate whether the bergamot products (essential oil, juice, and ethanol extract) could improve PD induced by estradiol benzoate and oxytocin. The rats were supplemented with the three doses of bergamot products and positive drugs by gastric perfusion, respectively. The results demonstrated that bergamot products could alleviate PD with dose-dependence via inhibiting the growth of PGF2α /PGE2 ratio, accumulation of MDA, and release of iNOS, and promoting the activities of T-AOC, SOD, CAT, and GSH in uterine tissues. Furthermore, bergamot products could mitigate the writhing response and histopathological alterations in uterine tissues. In addition, bergamot essential oil had greater benefits than the corresponding dose of juice and ethanol extract. PRACTICAL APPLICATIONS: An increasing number of young women suffered PD, severely impacting their life. Seeking a healthy diet therapy can effectively avoid the adverse effects of PD drugs. Bergamot as natural fruit is rich in several bioactive ingredients. This study reported the function of bergamot products for alleviating PD via regulating the levels of prostaglandins and inflammatory mediator, and the capacities of antioxidants. This research provides insights for the development of functional foods with improving effect against PD. It also offers us a theoretical basis for the reasonable application of different forms of bergamot products.


Subject(s)
Dysmenorrhea , Oils, Volatile , Animals , Dysmenorrhea/drug therapy , Ethanol , Female , Humans , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Uterus
14.
Alcohol Alcohol ; 56(3): 334-347, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33103190

ABSTRACT

AIM: To compare effects on certain health indices in rodents of different doses of alcoholic beverages, huangjiu (Chinese yellow wine), red wine and baijiu (Chinese liquor) combined with high-fat diet (HFD) and the pure HFD. METHODS: A total of 80 rats were randomly divided into eight groups and treated with (a) basal diet (3.5 kcal/g); (b) HFD (19.5% w/w lard, 4.5 kcal/g) and (c) HFD with low or high doses of separate alcoholic beverages (2.5 and 5 g/kg ethanol, respectively) for 28 weeks. RESULTS: Chronic drinking when combined with HFD was associated with reduced body weight, fat accumulation and serum TNF-α level, serum TG, TC and LDL-C levels, and improved glucose tolerance (OGTT) and insulin sensitivity (ITT), hepatic enzymes; elevated levels or activities of the antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase, reduced the content of lipid peroxidation productions such as malondialdehyde, in comparison with the pure HFD intake. In addition, compared with HFD, drinking plus HFD improved microbiota dysbiosis, down-regulated the ratio of Firmicutes/Bacteroidetes and promoted the growth of some probiotics including Prevotellaceae_UCG-001 and norank_f__Bacteroidales_S24-7_group. CONCLUSION: Overall, the three beverages showed different impacts on indicators but red wine showed the most 'beneficial' effects. Of course, higher ethanol dosages can be expected to cause overall negative health effects, and harms of high fat intake can be prevented by healthier diet.


Subject(s)
Alcohol Drinking , Diet, High-Fat , Glucose/metabolism , Lipid Metabolism/drug effects , Wine , Animals , Biomarkers/blood , China , Dietary Fats/administration & dosage , Rats , Rats, Sprague-Dawley
15.
Mediators Inflamm ; 2020: 8868107, 2020.
Article in English | MEDLINE | ID: mdl-33082712

ABSTRACT

Acne vulgaris is one of the most common chronic inflammatory skin diseases. Bergamot and sweet orange are rich in nutritional and functional components, which exhibit antioxidant, anti-inflammatory, and antiapoptotic effect. The aim of this study was to evaluate the potential effect of bergamot and sweet orange (juice and essential oil) on acne vulgaris caused by excessive secretion of androgen. Eighty male golden hamsters were randomly divided into 10 groups and received low or high dose of bergamot and sweet orange juice and essential oil, physiological saline, and positive drugs for four weeks, respectively. Results showed that all interventions could improve acne vulgaris by reducing the growth rate of sebaceous gland spots, inhibiting TG accumulation, decreasing the release of inflammatory cytokines (notably reducing IL-1α levels), promoting apoptosis in the sebaceous gland, and decreasing the ratio of T/E2. Among them, bergamot and orange essential oil may have better effects (dose dependent) on alleviating acne vulgaris than the corresponding juice. In view of the large population of acne patients and the widespread use of sweet orange and bergamot, this study is likely to exert an extensive and far-reaching influence.


Subject(s)
Acne Vulgaris/drug therapy , Androgens/metabolism , Oils, Volatile/therapeutic use , Plant Oils/therapeutic use , Animals , Humans , Male , Mesocricetus
16.
Nutrients ; 10(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441755

ABSTRACT

Alcoholic liver disease (ALD) has become one of the major global health problems, with augmented morbidity and mortality. Evidence indicates that flavonoids can reduce the risk of ALD owing to their biological properties. However, the effect of structurally different flavonoid subclasses on alleviating alcohol-induced liver damage in a same model has never been studied. In this study, mice were supplemented with five kinds of flavonoid subgroups, apigenin (flavone), quercetin (flavonol), naringenin (flavanone), (-)-epigallocatechin gallate (flavanol), and genistein (isoflavone), in the same dose (0.3 mmol kg-1 body weight) and then given 50% alcohol by gastric perfusion for five consecutive weeks. The results demonstrated that genistein and naringenin had greater benefits in terms of mitigating fibrosis and apoptosis, respectively, in the liver. Lipid deposition, partial inflammatory-related factors (nuclear factor kappa B p65, cyclooxygenase-2, and interleukin-6 levels), and hepatic histopathological alterations were similarly attenuated by five kinds of flavonoids. All the flavonoids also showed different degrees of influence on protecting against alcoholic liver injury on other aspects, such as serum biochemistry makers, hepatic lipid accumulation, lipid peroxidation, antioxidant capacities, and inflammation.


Subject(s)
Flavonoids/chemistry , Flavonoids/therapeutic use , Liver Diseases, Alcoholic/drug therapy , Animals , Apoptosis/drug effects , Biomarkers/blood , Disease Models, Animal , Flavonoids/pharmacology , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Lipid Peroxidation , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Liver Diseases, Alcoholic/prevention & control , Male , Mice , Mice, Inbred ICR , Molecular Structure , Oxidative Stress , Random Allocation , Structure-Activity Relationship
17.
J Agric Food Chem ; 66(3): 563-570, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29280631

ABSTRACT

Ultrasonication is an emerging technology applied in food processing and biological experimental pretreatments. Cavitation phenomena induced during ultrasonic treatment can generate localized high temperature and pressure, which can result in glycation reaction between protein and reducing sugars. In this study, the mixture of bovine serum albumin (BSA) and d-ribose was treated under 600 W for different times. Interestingly, a large amount of carbonized black materials appeared after ultrasonication, while the UV absorbance and intrinsic fluorescence spectra reflecting conformational changes were not obvious. Only 12 sites (11 lysines and 1 arginine) of the BSA with ribose under ultrasonic treatment for 35 min were identified through liquid chromatography high-resolution mass spectrometry (LCHR-MS). K547, K548, R359/R360, and K587 were the most reactive glycated sites, with the average degree of substitution per peptide molecule (DSP) value ranging from 15 to 35%. The glycated modification was distributed not only in domain III, but also in domains I and II. The glycated modification could occur during ultrasonic treatment, thereby influencing the properties of biomacromolecule after extraction.


Subject(s)
Ribose/chemistry , Serum Albumin, Bovine/chemistry , Amino Acid Motifs , Animals , Chromatography, Liquid , Glycosylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ultrasonics
18.
J Sci Food Agric ; 98(3): 1024-1032, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28718883

ABSTRACT

BACKGROUND: Protein-polysaccharide complex coacervations have been considered extensively for the development of functional foods. The main problem of the complex coacervates is that they are highly unstable under different conditions and that cross-linking is necessary to stabilize them. In this study, the effects of pectin at different concentrations on the gel and structural properties of fish scale gelatin (FSG)-high methoxyl citrus pectin (HMP) coacervate enhanced by microbial transglutaminase (MTGase) were studied. RESULTS: The gelation rates and gel strength of the MTGase-enhanced FSG-HMP coacervate gels decreased with increasing HMP concentration. However, the enhanced coacervate gels exhibited better thermal behavior and mechanical properties compared with the original gels. Also, TG-P8 exhibited the highest melting point (27.15 ± 0.12 °C), gelation point (15.65 ± 0.01 °C) and stress (15.36 ± 0.48 kPa) as HMP was 8 g kg-1 . Particle size distribution, fluorescence emission and UV absorbance spectra indicated that MTGase and HMP could make FSG form large aggregates. Moreover, confocal laser scanning microscopy of treated coacervate gels showed a continuous protein phase at low HMP concentrations. CONCLUSION: FSG and HMP could form soluble coacervate, and MTGase could improve the thermal and mechanical properties of coacervate gels. © 2017 Society of Chemical Industry.


Subject(s)
Animal Scales/chemistry , Bacterial Proteins/chemistry , Fish Proteins/chemistry , Gelatin/chemistry , Pectins/chemistry , Transglutaminases/chemistry , Animals , Biocatalysis , Fishes , Gels/chemistry , Kinetics
19.
Carbohydr Polym ; 156: 294-302, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27842826

ABSTRACT

The rheological behavior, gel properties and nanostructure of complex modified fish scales gelatin (FSG) by pectin and microbial transglutaminase (MTGase) were investigated. The findings suggested that MTGase and pectin have positive effect on the gelation point, melting point, apparent viscosity and gel properties of FSG. The highest values of gel strength and melting temperature could be observed at 0.8% (w/v) pectin. Nevertheless, at highest pectin concentration (1.6% w/v), the gel strength and melting temperature of complex modified gelatin gels decreased. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis revealed that MTGase catalyzed cross-links among soluble fish scales gelatin - pectin complexes, which could be responsible for the observed increase in rheological behavior, gel strength and melting temperature of modified complex gels.


Subject(s)
Gelatin/chemistry , Gels/chemistry , Nanostructures/chemistry , Pectins/chemistry , Animals , Fishes , Gelatin/ultrastructure , Nanostructures/ultrastructure , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...