Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Adv Mater ; 36(24): e2312879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444241

ABSTRACT

Monodispersed microspheres play a major role in optical science and engineering, providing ideal building blocks for structural color materials. However, the method toward high solid content (HSC) monodispersed microspheres has remained a key hurdle. Herein, a facile access to harvest monodispersed microspheres based on the emulsion polymerization mechanism is demonstrated, where anionic and nonionic surfactants are employed to achieve the electrostatic and steric dual-stabilization balance in a synergistic manner. Monodispersed poly(styrene-butyl acrylate-methacrylic acid) colloidal latex with 55 wt% HSC is achieved, which shows an enhanced self-assembly efficiency of 280% compared with the low solid content (10 wt%) latex. In addition, Ag-coated colloidal photonic crystal (Ag@CPC) coating with near-zero refractive index is achieved, presenting the characteristics of metamaterials. And an 11-fold photoluminescence emission enhancement of CdSe@ZnS quantum dots is realized by the Ag@CPC metamaterial coating. Taking advantage of high assembly efficiency, easily large-scale film-forming of the 55 wt% HSC microspheres latex, robust Ag@CPC metamaterial coatings could be easily produced for passive cooling. The coating demonstrates excellent thermal insulation performance with theoretical cooling power of 30.4 W m-2, providing practical significance for scalable CPC architecture coatings in passive cooling.

2.
Macromol Rapid Commun ; 44(6): e2200832, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36574621

ABSTRACT

Fluorescent nanocomposite gels have attracted increasing attention due to their excellent optical properties, as well as enhanced mechanical strength originating from the nanoparticles. At present, two-step methods are usually employed, where fluorescent nanoparticles are firstly prepared, followed by mixing with gel precursor to achieve the final products after gelation, which suffer from the disadvantages of a tedious and time-consuming process. Thus, the development of a facile strategy is highly desirable, which still remains an obstacle. Herein, a new one-pot synthesis method towards robust fluorescent nanocomposite gels via frontal polymerization (FP) is proposed, where small molecular precursors (citric acid (CA) and urea, or L-cysteine) and gel precursor (vinyl monomers) are mixed together as co-reactants. During the FP process, a lot of heat release gives rise to the generation of carbonized polymer dots (CPDs). Thus, companying with the propagating of the polymerization, the production of fluorescent CPDs/gel composite is completed. In addition, as a nanofiller, CPDs dramatically enhance the mechanical property of the CPDs/gel composite. This work proposes a new fast and efficient one-pot strategy for the production of CPDs/gel composite, which will guide the development of high-performance polymer nanocomposites through an in situ synchronous reaction fashion.


Subject(s)
Nanoparticles , Nanogels , Polymerization , Coloring Agents , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...