Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 610(7930): 182-189, 2022 10.
Article in English | MEDLINE | ID: mdl-36131013

ABSTRACT

Most current therapies that target plasma membrane receptors function by antagonizing ligand binding or enzymatic activities. However, typical mammalian proteins comprise multiple domains that execute discrete but coordinated activities. Thus, inhibition of one domain often incompletely suppresses the function of a protein. Indeed, targeted protein degradation technologies, including proteolysis-targeting chimeras1 (PROTACs), have highlighted clinically important advantages of target degradation over inhibition2. However, the generation of heterobifunctional compounds binding to two targets with high affinity is complex, particularly when oral bioavailability is required3. Here we describe the development of proteolysis-targeting antibodies (PROTABs) that tether cell-surface E3 ubiquitin ligases to transmembrane proteins, resulting in target degradation both in vitro and in vivo. Focusing on zinc- and ring finger 3 (ZNRF3), a Wnt-responsive ligase, we show that this approach can enable colorectal cancer-specific degradation. Notably, by examining a matrix of additional cell-surface E3 ubiquitin ligases and transmembrane receptors, we demonstrate that this technology is amendable for 'on-demand' degradation. Furthermore, we offer insights on the ground rules governing target degradation by engineering optimized antibody formats. In summary, this work describes a strategy for the rapid development of potent, bioavailable and tissue-selective degraders of cell-surface proteins.


Subject(s)
Antibodies , Antibody Specificity , Membrane Proteins , Proteolysis , Ubiquitin-Protein Ligases , Animals , Antibodies/immunology , Antibodies/metabolism , Colorectal Neoplasms/metabolism , Ligands , Membrane Proteins/immunology , Membrane Proteins/metabolism , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/immunology , Ubiquitin-Protein Ligases/metabolism
2.
MAbs ; 13(1): 1862452, 2021.
Article in English | MEDLINE | ID: mdl-33382956

ABSTRACT

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Surface/immunology , Antineoplastic Agents/immunology , Immunoconjugates/immunology , Oligopeptides/immunology , Xenograft Model Antitumor Assays/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Female , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice, SCID , Rats, Sprague-Dawley , Tumor Burden/drug effects , Tumor Burden/immunology
3.
Cell Rep ; 27(11): 3117-3123.e5, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189099

ABSTRACT

Agonistic antibodies targeting the tumor necrosis factor (TNF) superfamily of co-stimulatory receptors (TNFRSF) are progressing through various stages of clinical development for cancer treatment, but the desired and defining features of these agents for optimal biological activity remain controversial. One idea, based on recent studies with CD40, is that non-ligand-blocking antibodies targeting membrane-distal cysteine-rich domain 1 (CRD1) have superior agonistic activities compared with ligand-blocking antibodies targeting more membrane-proximal CRDs. Here, we determined the binding and functional characteristics of a panel of antibodies targeting CRDs 1-4 of OX40 (also known as TNFRSF4 or CD134). In striking contrast to CD40, we found that ligand-blocking CRD2-binding and membrane-proximal CRD4-binding anti-OX40 antibodies have the strongest agonistic and anti-tumor activities. These findings have important translational implications and further highlight that the relationship between epitope specificity and agonistic activity will be an important issue to resolve on a case-by-case basis when optimizing antibodies targeting different co-stimulatory tumor necrosis factor receptors (TNFRs).


Subject(s)
Antibodies, Monoclonal/immunology , Immunotherapy/methods , Neoplasms, Experimental/therapy , OX40 Ligand/immunology , Receptors, OX40/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Epitopes/chemistry , Epitopes/immunology , Humans , Jurkat Cells , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , OX40 Ligand/chemistry , Rats , Rats, Inbred Lew , Receptors, OX40/chemistry
4.
Nat Commun ; 9(1): 4679, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30410017

ABSTRACT

4-1BB (CD137, TNFRSF9) is an inducible costimulatory receptor expressed on activated T cells. Clinical trials of two agonist antibodies, utomilumab (PF-05082566) and urelumab (BMS-663513), are ongoing in multiple cancer indications, and both antibodies demonstrate distinct activities in the clinic. To understand these differences, we solved structures of the human 4-1BB/4-1BBL complex, the 4-1BBL trimer alone, and 4-1BB bound to utomilumab or urelumab. The 4-1BB/4-1BBL complex displays a unique interaction between receptor and ligand when compared with other TNF family members. Furthermore, our ligand-only structure differs from previously published data. Utomilumab, a ligand-blocking antibody, binds 4-1BB between CRDs 3 and 4. In contrast, urelumab binds 4-1BB CRD-1, away from the ligand binding site. Finally, cell-based assays demonstrate utomilumab is a milder agonist than urelumab. Collectively, our data provide a deeper understanding of the 4-1BB signaling complex, providing a template for future development of next generation 4-1BB targeted biologics.


Subject(s)
4-1BB Ligand/chemistry , 4-1BB Ligand/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Antibodies, Monoclonal, Humanized , Binding Sites , HEK293 Cells , Humans , Jurkat Cells , Models, Molecular , Protein Domains
5.
ACS Cent Sci ; 4(8): 1045-1055, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30159402

ABSTRACT

Cancer stem cells (CSCs) are progenitor cells that contribute to treatment-resistant phenotypes during relapse. CSCs exist in specific tissue microenvironments that cell cultures and more complex models cannot mimic. Therefore, the development of new approaches that can detect CSCs and report on specific properties (e.g., stem cell plasticity) in their native environment have profound implications for studying CSC biology. Herein, we present AlDeSense, a turn-on fluorescent probe for aldehyde dehydrogenase 1A1 (ALDH1A1) and Ctrl-AlDeSense, a matching nonresponsive reagent. Although ALDH1A1 contributes to the detoxification of reactive aldehydes, it is also associated with stemness and is highly elevated in CSCs. AlDeSense exhibits a 20-fold fluorescent enhancement when treated with ALDH1A1. Moreover, we established that AlDeSense is selective against a panel of common ALDH isoforms and exhibits exquisite chemostability against a collection of biologically relevant species. Through the application of surface marker antibody staining, tumorsphere assays, and assessment of tumorigenicity, we demonstrate that cells exhibiting high AlDeSense signal intensity have properties of CSCs. Using these probes in tandem, we have identified CSCs at the cellular level via flow cytometry and confocal imaging, as well as monitored their states in animal models.

6.
J Am Chem Soc ; 137(50): 15628-31, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26652006

ABSTRACT

Photoacoustic tomography has emerged as a promising alternative to MRI and X-ray scans in the clinical setting due to its ability to afford high-resolution images at depths in the cm range. However, its utility has not been established in the basic research arena owing to a lack of analyte-specific photoacoustic probes. To this end, we have developed acoustogenic probes for copper(II)-1 and -2 (APC-1 and APC-2, a water-soluble congener) for the chemoselective visualization of Cu(II), a metal ion which plays a crucial role in chronic neurological disorders such as Alzheimer's disease. To detect Cu(II), we have equipped both APCs with a 2-picolinic ester sensing module that is readily hydrolyzed in the presence of Cu(II) but not by other divalent metal ions. Additionally, we designed APC-1 and APC-2 explicitly for ratiometric photoacoustic imaging by using an aza-BODIPY dye scaffold exhibiting two spectrally resolved NIR absorbance bands which correspond to the 2-picolinic ester capped and uncapped phenoxide forms. The normalized ratiometric turn-on responses for APC-1 and APC-2 were 89- and 101-fold, respectively.


Subject(s)
Acoustics , Copper/chemistry , Molecular Probes
7.
Genes Dev ; 29(2): 123-8, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25593305

ABSTRACT

The methyltransferase activity of the trithorax group (TrxG) protein MLL1 found within its COMPASS (complex associated with SET1)-like complex is allosterically regulated by a four-subunit complex composed of WDR5, RbBP5, Ash2L, and DPY30 (also referred to as WRAD). We report structural evidence showing that in WRAD, a concave surface of the Ash2L SPIa and ryanodine receptor (SPRY) domain binds to a cluster of acidic residues, referred to as the D/E box, in RbBP5. Mutational analysis shows that residues forming the Ash2L/RbBP5 interface are important for heterodimer formation, stimulation of MLL1 catalytic activity, and erythroid cell terminal differentiation. We also demonstrate that a phosphorylation switch on RbBP5 stimulates WRAD complex formation and significantly increases KMT2 (lysine [K] methyltransferase 2) enzyme methylation rates. Overall, our findings provide structural insights into the assembly of the WRAD complex and point to a novel regulatory mechanism controlling the activity of the KMT2/COMPASS family of lysine methyltransferases.


Subject(s)
Histones/metabolism , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Crystallization , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Enzyme Activation/genetics , Erythroid Cells/cytology , Erythroid Cells/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Methylation/drug effects , Methyltransferases/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Transcription Factors/chemistry , Transcription Factors/metabolism
8.
Structure ; 22(12): 1821-1830, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25456412

ABSTRACT

DPY-30 is a subunit of mammalian COMPASS-like complexes (complex of proteins associated with Set1) and regulates global histone H3 Lys-4 trimethylation. Here we report structural evidence showing that the incorporation of DPY-30 into COMPASS-like complexes is mediated by several hydrophobic interactions between an amphipathic α helix located on the C terminus of COMPASS subunit ASH2L and the inner surface of the DPY-30 dimerization/docking (D/D) module. Mutations impairing the interaction between ASH2L and DPY-30 result in a loss of histone H3K4me3 at the ß locus control region and cause a delay in erythroid cell terminal differentiation. Using overlay assays, we defined a consensus sequence for DPY-30 binding proteins and found that DPY-30 interacts with BAP18, a subunit of the nucleosome remodeling factor complex. Overall, our results indicate that the ASH2L/DPY-30 complex is important for cell differentiation and provide insights into the ability of DPY-30 to associate with functionally divergent multisubunit complexes.


Subject(s)
DNA-Binding Proteins/metabolism , Models, Molecular , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Cell Line , Crystallography, X-Ray , Escherichia coli , Protein Binding , Saccharomyces cerevisiae
9.
Biopolymers ; 99(2): 136-45, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23175388

ABSTRACT

In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.


Subject(s)
Gene Regulatory Networks , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia, Myeloid/physiopathology , Myeloid-Lymphoid Leukemia Protein/metabolism
10.
Nucleic Acids Res ; 40(9): 4237-46, 2012 May.
Article in English | MEDLINE | ID: mdl-22266653

ABSTRACT

In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Protein Subunits/chemistry , Amino Acid Motifs , Binding Sites , Crystallography , Histone-Lysine N-Methyltransferase/metabolism , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Subunits/metabolism
11.
Nat Struct Mol Biol ; 18(7): 857-9, 2011 Jun 05.
Article in English | MEDLINE | ID: mdl-21642971

ABSTRACT

Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the ß-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the ß-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Amino Acid Motifs , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Transcription Factors/metabolism
12.
Structure ; 19(1): 101-8, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21220120

ABSTRACT

Histone H3 Lys-4 methylation is predominantly catalyzed by a family of methyltransferases whose enzymatic activity depends on their interaction with a three-subunit complex composed of WDR5, RbBP5, and Ash2L. Here, we report that a segment of 50 residues of RbBP5 bridges the Ash2L C-terminal domain to WDR5. The crystal structure of WDR5 in ternary complex with RbBP5 and MLL1 reveals that both proteins binds peptide-binding clefts located on opposite sides of WDR5's ß-propeller domain. RbBP5 engages in several hydrogen bonds and van der Waals contacts within a V-shaped cleft formed by the junction of two blades on WDR5. Mutational analyses of both the WDR5 V-shaped cleft and RbBP5 residues reveal that the interactions between RbBP5 and WDR5 are important for the stimulation of MLL1 methyltransferase activity. Overall, this study provides the structural basis underlying the formation of the WDR5-RbBP5 subcomplex and further highlight the crucial role of WDR5 in scaffolding the MLL1 core complex.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Myeloid-Lymphoid Leukemia Protein/chemistry , Nuclear Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , DNA-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
13.
FASEB J ; 25(3): 960-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21135039

ABSTRACT

The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an Nα acetylated form of histone H3 peptide (NαH3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of NαH3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.


Subject(s)
DNA Methylation/physiology , Epigenomics , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein , Stem Cells/enzymology , Acetylation , Cell Differentiation/physiology , Cells, Cultured , Crystallography , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/genetics , Humans , Intracellular Signaling Peptides and Proteins , Models, Chemical , Molecular Mimicry , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Nuclear Proteins/metabolism , Nucleosomes/physiology , Peptide Library , Protein Binding/physiology , Protein Structure, Tertiary , Stem Cells/cytology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...