Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552398

ABSTRACT

Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.


Subject(s)
Biodegradation, Environmental , Microplastics , Polybrominated Biphenyls , Polystyrenes , Soil Microbiology , Soil Pollutants , Polystyrenes/chemistry , Polybrominated Biphenyls/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Oxidoreductases/metabolism , Soil/chemistry , Adsorption
2.
Environ Res ; 251(Pt 1): 118596, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38442810

ABSTRACT

n-Caproic acid is a widely used biochemical that can be produced from organic waste through chain elongation technology. This study aims to evaluate the environmental impacts of n-caproic acid production through chain elongation by two processes (i.e., shunting and staged technology). The Open-life cycle assessment (LCA) model was used to calculate the environmental impacts of both technologies based on experimental data. Results showed that the shunting technology had higher environmental impacts than the staged technology. Water and electricity made bigger contribution to the environmental impacts of both technologies. Reusing chain elongation effluent substituting for water and using electricity produced by wind power could reduce the environmental impacts of water and electricity effectively. Using ethanol from food waste had higher global warming potential than fossil ethanol, which suggested that a cradle-to-grave LCA is needed to be carried out for specific raw materials and chain elongation products in the future.


Subject(s)
Environment , Food Loss and Waste
3.
Bioresour Technol ; 395: 130396, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301941

ABSTRACT

Ruminal microorganisms can efficiently hydrolyze biomass waste for short-chain fatty acid (SCFA) production. However, the continuous SCFA production by ruminal microorganisms at high loads is unclear. In this study, the effectiveness of a rumen semi-continuous reactor at high load for SCFA production was explored. Results showed that SCFA concentration reached 13.3 g/L at 8 % (w/v) corn straw load. The higher the corn straw load, the lower the volatile solid removal. Rumen microbial community composition changed significantly with increasing corn straw load. A significant decrease in bacterial diversity and abundance was observed at 8 % corn straw load. Some core genera such as Prevotella, Saccharofermentans, and Ruminococcus significantly increased. As corn straw loads increased, the expression of functional genes related to hydrolysis and acidogenesis gradually increased. Thus, the 8.0 % load is suitable for SCFA production. These findings provide new insights into high load fermentation of ruminal microorganisms.


Subject(s)
Rumen , Zea mays , Animals , Zea mays/metabolism , Rumen/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , Bacteria/metabolism
4.
Biotechnol Adv ; 71: 108308, 2024.
Article in English | MEDLINE | ID: mdl-38211664

ABSTRACT

The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.


Subject(s)
Lignin , Rumen , Animals , Fermentation , Biofuels
5.
Environ Res ; 242: 117796, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38040178

ABSTRACT

Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-ß-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.


Subject(s)
Fatty Acids, Volatile , Gram-Negative Bacteria , Fatty Acids, Volatile/metabolism , Fermentation , Anaerobiosis , Gram-Negative Bacteria/metabolism , Carbon/metabolism , Bioreactors , Hydrogen-Ion Concentration , Sewage
6.
Waste Manag ; 174: 476-486, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38128366

ABSTRACT

Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.


Subject(s)
Lignin , Rumen , Animals , Lignin/metabolism , Anaerobiosis , Rumen/metabolism , Rumen/microbiology , Hydrolysis , Biomass , Fermentation , Fatty Acids, Volatile/metabolism , Zea mays/metabolism , Bacteria/metabolism
7.
Environ Res ; 238(Pt 1): 117160, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717801

ABSTRACT

In order to design an optimal carbon peak and carbon neutralization pathway for the high-density building sector, a dynamic prediction model is established using system-dynamics coupled building life cycle carbon emission model (SD-BLCA) with consideration of future evolutionary trajectory and time constraints. The model is applied in Beijing using the SD-BLCA combined with scenario analysis and Monte Carlo methods to explore optimal trajectory for its building sector under 30-year timeframe. The results indicate that by increasing the proportion of renewable energy generation by 7% and retrofitting 60 million m2 of existing buildings, these two mature measures can offset the growth of carbon emissions and achieve the peak target by 2025. However, achieving carbon neutrality necessitates a shift from isolated technologies to a comprehensive net-zero emissions strategy. The study proposes a time roadmap that integrates a zero-carbon energy supply system and the carbon reduction measures of the whole life cycle. This strategy primarily relies on renewable sources to provide heat, power, and hydrogen, resulting in estimated reductions of 29.8 Mt, 28.1 Mt, and 0.7 Mt, respectively. Zero energy buildings, green buildings, and renovated buildings can reduce carbon emissions through their own energy-saving measures by 8.4, 18.2, and 11.8 kg/m2, respectively.


Subject(s)
Carbon Dioxide , Carbon , Beijing , Carbon Dioxide/analysis , Social Conditions , China
8.
Environ Res ; 237(Pt 2): 116949, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625538

ABSTRACT

A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.

9.
Chemosphere ; 339: 139723, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543231

ABSTRACT

Chain elongation is an environmentally friendly biological technology capable of converting organic wastes into medium chain carboxylic acids (MCCAs). This review aims to offer a comprehensive analysis of MCCA production from organic wastes via chain elongation. Seven kinds of organic wastes are introduced and classified as easily degradable and hardly degradable. Among them, food waste, fruit and vegetable waste are the most potential organic wastes for MCCA production. Combined pretreatment technologies should be encouraged for the pretreatment of hardly degradable organic wastes. Furthermore, the mechanisms during MCCA production are analyzed, and the key influencing factors are evaluated, which affect the MCCA production and chain elongation efficiency indirectly. Extracting MCCA simultaneously is the most important way to improve MCCA production efficiency, and technologies for sequentially extracting different kinds of MCCAs are recommended. Finally, some perspectives for future chain elongation researches are proposed to promote the large-scale application of chain elongation.


Subject(s)
Carboxylic Acids , Refuse Disposal , Fermentation , Bioreactors , Fruit
10.
Environ Pollut ; 334: 122156, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37422085

ABSTRACT

Microplastics, a kind of emerging pollutant, have become a global environmental research hotspot in recent years due to its wide distribution in soil and its impact on soil ecosystems. However, little information is available on the interactions between microplastics and organic contaminants in soil, especially after microplastic aging. The impact of polystyrene (PS) microplastic aging on the sorption of tetrabromobisphenol A (TBBPA) in soil and the desorption characteristics of TBBPA-loaded microplastics in different environments were studied. The results showed a significant increase of 76.3% in adsorption capacity of TBBPA onto PS microplastics after aging for 96 h. Based on the results of characterization analysis and density functional theory (DFT) calculation, the mechanisms of TBBPA adsorption changed mainly from hydrophobic and π-π interactions on pristine PS microplastics to hydrogen bond and π-π interactions on aged PS microplastics. The presence of PS microplastics increased the TBBPA sorption capacity onto soil-PS microplastics system and significantly altered the distribution of TBBPA on soil particles and PS microplastics. The high TBBPA desorption over 50% from aged PS microplastics in simulated earthworm gut environment suggested that TBBPA contamination combined with PS microplastics might pose a higher risk to macroinvertebrates in soil. Overall, these findings contribute to the understanding of impact of PS microplastic aging in soil on the environmental behaviors of TBBPA, and provide valuable reference for evaluating the potential risk posed by the co-existence of microplastics with organic contaminants in soil ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Polystyrenes , Plastics , Adsorption , Soil/chemistry , Biological Availability , Ecosystem , Water Pollutants, Chemical/analysis
11.
J Environ Manage ; 344: 118558, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37421820

ABSTRACT

Baiyangdian wetland is the biggest plant-dominated shallow freshwater wetland in Huabei Plain, providing a wide range of ecosystem services. In the past few decades, the water scarcity and eco-environmental problems resulted from climate changes and human activities have become more and more serious. To relieve the pressure of water scarcity and ecological degradation, the government has implemented ecological water diversion projects (EWDPs) since 1992. In this study, land use and land cover change (LUCC) caused by EWDPs over three decades was analyzed to quantitatively assess the impact of EWDPs on ecosystem services. Coefficients of ecosystem service value (ESV) calculation were improved for regional ESV evaluation. The results showed that the area of construction, farmland and water increased by 6171, 2827, 1393 ha, respectively, and the total ESV increased by 8.04 × 108 CNY primarily due to the increase of regulating service with water area expansion. Redundancy analysis and socio-economic comprehensive analysis showed that EWDPs impacted water area and ESV with threshold and time effect. When the water diversion exceeded the threshold, the EWDPs affected the ESV through influencing LUCC; otherwise, the EWDPs affected the ESV through influencing net primary productivity or social-economic benefits. However, the impact of EWDPs on ESV gradually weakened as time passed, which could not keep sustainability. With the establishment of Xiong'an New Area in China and implementation of carbon neutrality policy, rational EWDPs will become crucial to achieve goals of ecological restoration.


Subject(s)
Ecosystem , Wetlands , Humans , Water , Conservation of Natural Resources , China
12.
Chemosphere ; 336: 139242, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37330070

ABSTRACT

Ruminant rumen is a biological fermentation system that can efficiently degrade lignocellulosic biomass. The knowledge about mechanisms of efficient lignocellulose degradation with rumen microorganisms is still limited. In this study, composition and succession of bacteria and fungi, carbohydrate-active enzymes (CAZymes), and functional genes involved in hydrolysis and acidogenesis were revealed during fermentation in Angus bull rumen via metagenomic sequencing. Results showed that degradation efficiency of hemicellulose and cellulose reached 61.2% and 50.4% at 72 h fermentation, respectively. Main bacterial genera were composed of Prevotella, Butyrivibrio, Ruminococcus, Eubacterium, and Fibrobacter, and main fungal genera were composed of Piromyces, Neocallimastix, Anaeromyces, Aspergillus, and Orpinomyces. Principal coordinates analysis indicated that community structure of bacteria and fungi dynamically changed during 72 h fermentation. Bacterial networks with higher complexity had stronger stability than fungal networks. Most CAZyme families showed a significant decrease trend after 48 h fermentation. Functional genes related to hydrolysis decreased at 72 h, while functional genes involved in acidogenesis did not change significantly. These findings provide a in-depth understanding of mechanisms of lignocellulose degradation in Angus bull rumen, and may guide the construction and enrichment of rumen microorganisms in anaerobic fermentation of waste biomass.


Subject(s)
Microbiota , Zea mays , Cattle , Animals , Male , Rumen/microbiology , Fermentation , Microbiota/genetics , Bacteria/genetics , Gene Expression , Digestion
13.
Bioresour Technol ; 384: 129286, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37277004

ABSTRACT

A novel valorization approach of food waste via staged fermentation and chain elongation was proposed. Food waste was moderately saccharified, saccharification effluent was fermented to produce ethanol and saccharification residue was hydrolyzed and acidified to produce VFAs. The yeast fermentation effluent and hydrolytic acidification effluent were sequentially performed for chain elongation. Ethanol and volatile fatty acids from staged fermentation were suitable for direct chain elongation and the n-caproate production was 184.69 mg COD/g VS when yeast fermentation effluent to hydrolytic acidification effluent ratio was 2:1. Food waste was deeply utilized with an organic conversion of 80%. The relative abundance of Clostridium sensu stricto increased during chain elongation, which might be responsible for the improvement of n-caproate production. A profit of 10.65 USD/t was estimated for chain elongation of food waste staged fermentation effluent. This study provided a new technology to achieve advanced treatment and high-valued utilization of food waste.


Subject(s)
Food , Refuse Disposal , Fermentation , Caproates , Saccharomyces cerevisiae , Fatty Acids, Volatile , Bioreactors , Ethanol
14.
J Hazard Mater ; 452: 131302, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37031670

ABSTRACT

Biological dehalogenation degradation was an important detoxification method for the ecotoxicity and teratogenic toxicity of fluorocorticosteroids (FGCs). The functional strain Acinetobacter pittii C3 can effectively biodegrade and defluorinate to 1 mg/L Triamcinolone acetonide (TA), a representative FGCs, with 86 % and 79 % removal proportion in 168 h with the biodegradation and detoxification kinetic constant of 0.031/h and 0.016/h. The dehalogenation and degradation ability of strain C3 was related to its dehalogenation genomic characteristics, which manifested in the functional gene expression of dehalogenation, degradation, and toxicity tolerance. Three detoxification mechanisms were positively correlated with defluorination pathways through hydrolysis, oxidation, and reduction, which were regulated by the expression of the haloacid dehalogenase (HAD) gene (mupP, yrfG, and gph), oxygenase gene (dmpA and catA), and reductase gene (nrdAB and TgnAB). Hydrolysis defluorination was the most critical way for TA detoxification metabolism, which could rapidly generate low-toxicity metabolites and reduce toxic bioaccumulation due to hydrolytic dehalogenase-induced defluorination. The mechanism of hydrolytic defluorination was that the active pocket of hydrolytic dehalogenase was matched well with the spatial structure of TA under the adjustment of the hydrogen bond, and thus induced molecular recognition to promote the catalytic hydrolytic degradation of various amino acid residues. This work provided an effective bioremediation method and mechanism for improving defluorination and detoxification performance.


Subject(s)
Acinetobacter , Hydrolases , Hydrolysis , Hydrolases/metabolism , Acinetobacter/genetics , Acinetobacter/metabolism , Oxidation-Reduction , Genomics
15.
Waste Manag ; 164: 29-36, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37023642

ABSTRACT

In this study, food waste saccharified residue was used to produce volatile fatty acids (VFAs), and the effects of substrate concentration on VFA production, VFA composition, acidogenic efficiency, microbial community, and carbon transfer were investigated. Interestingly, chain elongation from acetate to n-butyrate played an important role with a substrate concentration of 200 g/L in the acidogenesis process. Results showed that 200 g/L was a suitable substrate concentration for both VFA and n-butyrate production, the highest VFA production, and n-butyrate composition were 280.87 mg COD/g vS and more than 90.00 %, respectively, and VFA/SCOD reached 82.39 %. Microbial analysis showed that Clostridium_Sensu_Stricto_12 promoted n-butyrate production by chain elongation. Carbon transfer analysis indicated that chain elongation made a contribution of 43.93 % to n-butyrate production. Totally 38.47 % of organic matter in food waste saccharified residue was further utilized. This study provides a new way for n-butyrate production with waste recycling and low cost.


Subject(s)
Food , Refuse Disposal , Fermentation , Anaerobiosis , Hydrogen-Ion Concentration , Fatty Acids, Volatile , Bioreactors , Butyrates , Carbon , Sewage/chemistry
16.
Water Res ; 235: 119841, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36913812

ABSTRACT

In our previous study, quorum quenching (QQ) bacteria can effectively enhance methane production in an anaerobic membrane bioreactor (AnMBR) while mitigating membrane biofouling. However, the mechanism of such enhancement is unclear. In this study, we analyzed the potential effects from separated hydrolysis, acidogenesis, acetogenesis and methanogenesis steps. The cumulative methane production improved by 26.13%, 22.54%, 48.70% and 44.93% at QQ bacteria dosage of 0.5, 1, 5 and 10 mg strain/g beads, respectively. It was found that the presence of QQ bacteria enhanced acidogenesis step resulting in higher volatile fatty acids (VFA) production, while it had no obvious influence on hydrolysis, acetogenesis and methanogenesis steps. The substrate (glucose) conversion efficiency in acidogenesis step was also accelerated (1.45 folds vs control within first eight hours). The abundance of hydrolytic fermentation gram-positive bacteria and several acidogenic bacteria, such as Hungateiclostridiaceae, was promoted in QQ amended culture, which enhanced VFA production and accumulation. Although the abundance of acetoclastic methanogen Methanosaeta reduced by 54.2% on the 1st day of QQ beads addition, the overall performance of methane production was not affected. This study revealed that QQ had a greater impact on the acidogenesis step in the anaerobic digestion process, though the microbial community in acetogenesis and methanogenesis steps was altered. This work can provide a theoretical basis for using QQ technology to slow down the rate of membrane biofouling in anaerobic membrane bioreactors while increasing methane production and maximizing economic benefits.


Subject(s)
Biofouling , Quorum Sensing , Anaerobiosis , Bacteria , Bioreactors/microbiology , Fatty Acids, Volatile , Methane , Sewage/microbiology
17.
Bioresour Technol ; 371: 128616, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640819

ABSTRACT

In order to reduce the pyrolysis temperature during the process of directional conversion from kitchen waste (KW) into aromatic biochar, a kind of catalyst was prepared with carbon material coated with tri-metallic oxide (Fe2O3, MgO and Al2O3) combining with sulfonic acid groups (CMO@SA) according to KW compositions. The aromaticity of KW pyrolysis biochar (KWB) increased when the temperature ranged from 170 to 210 °C. The catalytic pyrolysis temperature of KW reduced from 500 to 190 °C for biochar generation with similar aromaticity due to amendment of CMO@SA. The maximum adsorption capacity of catalytic pyrolysis KWB was 160.23 mg/g for dyeing wastewater, which was equivalent to biochar generated at 500 °C. The decrease of pyrolysis temperature was attributed to the reduction of bonds fracture activation-energy among CH, CC and CO under the catalytic function. The catalytic activity and recovery of CMO@SA kept at 92 % and 90 % after five recycle.


Subject(s)
Carbon , Pyrolysis , Temperature , Charcoal/chemistry , Adsorption , Alkanesulfonates
18.
Bioresour Technol ; 370: 128569, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592865

ABSTRACT

Food waste was used to produce ethanol by yeast fermentation and volatile fatty acids (VFAs) by hydrolytic acidogenesis for chain elongation. Effectiveness of mole ratio of ethanol in yeast fermentation effluent (YFE) to VFAs in hydrolytic acidification effluent (HAE) on chain elongation was examined. The ideal YFE to HAE ratio for chain elongation was 2:1, the highest n-caproate production was 169.76 mg COD/g vS and the food waste utilization was 65.43 %. Electron transfer and carbon distribution did not completely correspond to n-caproate production, suggesting timely product extraction. The abundance of Romboutsia and Clostridium_sensu_stricto_12 increased as chain elongation progressed, which was critical for the chain elongation to n-caproate. The food waste shunting ratio of yeast fermentation to hydrolytic acidogenesis was 6:5, and 572.6 CNY can be created through chain elongation from shunting fermentation of 1 t food waste. This study proposed a new approach for efficient producing n-caproate from food waste.


Subject(s)
Food , Refuse Disposal , Fermentation , Caproates , Saccharomyces cerevisiae , Fatty Acids, Volatile , Ethanol , Bioreactors
19.
Sci Bull (Beijing) ; 67(1): 79-84, 2022 01.
Article in English | MEDLINE | ID: mdl-36545963

ABSTRACT

Electrochemistry contributes a strong tool for the manufacture of molecules, addressing intractable challenges in synthetic chemistry by enabling innovative reaction pathways. Herein, a bifunctional reagent, aqueous hydrochloric acid, is used to establish an electrochemical selective dual-oxidation approach that gives access to α-chlorosulfoxides from sulfides. This strategy presents broad substrate scope, high diastereoselectivity, and regioselectivity. The late-stage modification of amino acids and pharmaceutical derivatives further highlights the utility. Furthermore, detailed mechanistic studies reveal that the key success for this selective chemical transformation is the dual-oxidation process at the anode. This electrochemical dual-oxidation strategy may have wide universality; we anticipate diverse applications of this protocol across the many fields of chemistry.


Subject(s)
Amino Acids , Sulfides , Sulfides/chemistry , Oxidation-Reduction , Amines , Electrochemistry
20.
J Environ Manage ; 323: 116070, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36113292

ABSTRACT

The quality of groundwater along rivers is greatly affected by long-term infiltration from surface water, especially reclaimed water-receiving rivers. To predict the degree of influence of contaminated river water on groundwater quality, the spatiotemporal distribution and migration evolution prediction of benzo[a]pyrene (B(a)P) was monitored and simulated by Hydrus-coupled Groundwater Modeling Systems (GMS) model in terms of reclaimed water-receiving Liangshui River. The prediction results indicated the goodness-of-fit of this coupled model, according to the model efficiency (E: 0.78-0.93), the mean absolute error (MAE: 0.01-0.32 m) and the root-mean-square error (RMSE: 0.06-0.35 m). The vertical infiltration rate of B(a)P in the vadose zone was 0.102 m-1, which was only 0.73% that of water. B(a)P penetrated the 16 m depth vadose zone for 63 years owing to the attenuation function of adsorption and biodegradation, with contribution ratios of 78.4% and 19.3%, respectively. However, once B(a)P intersects with groundwater, the migration of B(a)P is dominated by horizontal migration due to downward movement along the groundwater flow direction. The migration rate of B(a)P in groundwater was 6.65 m/y in the horizontal direction, which was 2.42 and 16.22 times higher than the dispersion rate in the longitudinal and vertical directions, respectively. The spatiotemporal distribution indicated that the B(a)P concentration decreased with the crow-fly distance from river with attenuation rate constants of 1.19 × 10-4, 3.05 × 10-4, and 3.67 × 10-3 m-1 over horizontal, longitudinal, and vertical direction, respectively, which were negatively correlated with migration rate. However, the B(a)P content increased over the extension of infiltration time with an accumulation rate of 7.3 × 10-2 d-1. The migration and accumulation of B(a)P induced potential health risks to groundwater-based drinking water safety, which resulted in the groundwater safety utilization range decreasing from 450 m, 283 m, and 20.1 m-583 m, 338 m, and 28.2 m far from the river over the horizontal, longitudinal, and vertical directions, respectively, 20 years later. This study provides a numerical modeling solution for the viable spatiotemporal evolution of B(a)P in groundwater and an effective decision-making tool for the safe utilization of groundwater as drinking water.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Benzo(a)pyrene , China , Environmental Monitoring/methods , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...