Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Mater Today Bio ; 24: 100928, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179432

ABSTRACT

Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.

2.
Mol Cell Biochem ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228982

ABSTRACT

Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.

3.
J Mater Chem B ; 12(2): 508-524, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38108579

ABSTRACT

Poly(lactide-co-glycolide) (PLGA) and calcium sulfate composites are promising biodegradable biomaterials but are still challenging to use in people with high levels of blood glucose or diabetes. To date, the influence of glucose on their degradation has not yet been elucidated and thus calls for more research attention. Herein, a novel calcium sulfate whisker with L-arginine was used to effectively tune its crystal morphology and was employed as a reinforced phase to construct the PLGA-based composite scaffolds (ArgCSH/PLGA) with a sleeve porous structure. ArgCSH/PLGA showed excellent elastic modulus and strength in the compression and bending models. Moreover, an in vitro immersion test showed that ArgCSH/PLGA possessed degradation and redeposition behaviors sensitive to glucose concentration, and the adsorbed Arg played a crucial role in the degradation process. The subsequent cell functional evaluation showed that ArgCSH could effectively protect cells from damage caused by AGEs and promote osteogenic differentiation. The corresponding degradation products of ArgCSH/PLGA displayed the ability to regulate osteoblast bone differentiation and accelerate matrix mineralization. These findings provide new insights into the interaction between biomaterials and the physiological environment, which may be useful in expanding the targeted choice of efficient bone graft biodegradable materials for diabetic osteoporosis.


Subject(s)
Osteogenesis , Polyglactin 910 , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglactin 910/chemistry , Calcium Sulfate , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Arginine/pharmacology , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
4.
Front Bioeng Biotechnol ; 11: 1283526, 2023.
Article in English | MEDLINE | ID: mdl-38026857

ABSTRACT

Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.

5.
Article in English | MEDLINE | ID: mdl-37668064

ABSTRACT

Due to ethical issues and simplification of traditional biomechanical models, experimental methods and traditional computer methods were difficult to quantify the effects of foot excitation and shin posture on vibration behavior of the entire spine inside a seated human body under vertical whole-body vibration. This study developed and verified different three-dimensional (3D) finite element (FE) models of seated human body with detailed anatomical structure under the biomechanical characteristics to predict vibration behavior of the entire spine inside a seated human body with different foot excitation (with and without vibration) and shin posture (vertical and tilt posture). Random response analysis was performed to study the transmissibility of the entire spine to seat under vertical white noise excitation between 0 and 20 Hz at 0.5 m/s2 r.m.s. The results showed that although the foot excitation could reduce the fore-aft transmissibility in the cervical spine (23% reduction), it could significantly increase that in the lumbar spine (52% increase), which resulted in complex alternating stresses at lumbar spine and made the lumbar spine more vulnerable to injury in long-term vibration environment. Moreover, the shin tilt posture made the maximum fore-aft transmissibility in the lumbar spine move to the upper lumbar spine. The study provided new insights into the influence of foot excitation and shin posture on the vibration behavior of the entire spine inside a seated human body. Foot excitation exposed the lumbar spine to complex alternating stresses and made it more vulnerable to injury in long-term whole body vibration.

6.
J Biol Eng ; 17(1): 45, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461106

ABSTRACT

BACKGROUND: Novel bone substitutes are urgently needed in experimental research and clinical orthopaedic applications. There are many traditional Chinese medicines that have effects on bone repair. However, application of natural medicines in traditional Chinese medicine to bone tissue engineering and its mechanism were rarely reported. RESULTS: In this study, the osteogenic ability of bioactive glass particles (BGPs) and the osteogenic and osteoclastic ability of neferine (Nef) were fused into PLGA-based bone tissue engineering materials for bone regeneration. BGPs were prepared by spray drying and calcination. Particles and Nef were then mixed with PLGA solution to prepare porous composites by the phase conversion method. Here we showed that Nef inhibited proliferation and enhanced ALP activity of MC3T3-E1 cells in a dose- and time-dependent manner. And the composites containing Nef could also inhibit RANKL-induced osteoclast formation (p < 0.05). Mechanistically, the PLGA/BGP/Nef composite downregulated the expression of NFATC1 by inhibiting the NF-κB pathway to restrain osteoclasts. In the other hands, PLGA/BGP/Nef composite was first demonstrated to effectively activate the IGF-1R/PI3K/AKT/mTOR pathway to enhance IGF-1-mediated osteogenic differentiation. The results of animal experiments show that the material can effectively promote the formation and maturation of new bone in the skull defect site. CONCLUSIONS: The PLGA/BGP/Nef porous composite can restrain osteoclasts by inhibiting the NF-κB pathway, enhance IGF-1-mediated osteogenic differentiation and promotes bone regeneration, and has the potential for clinical application.

7.
J Biol Eng ; 17(1): 43, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430290

ABSTRACT

BACKGROUND: Modular tissue engineering (MTE) is a novel "bottom-up" approach that aims to mimic complex tissue microstructural features. The constructed micromodules are assembled into engineered biological tissues with repetitive functional microunits and form cellular networks. This is emerging as a promising strategy for reconstruction of biological tissue. RESULTS: Herein, we constructed a micromodule for MTE and developed engineered osteon-like microunits by inoculating human-derived umbilical cord mesenchymal stem cells (HUMSCs) onto nHA/PLGA microspheres with surface modification of dual growth factors (BMP2/bFGF). By evaluating the results of proliferation and osteogenic differentiation ability of HUMSCs in vitro, the optimal ratio of the dual growth factor (BMP2/bFGF) combination was derived as 5:5. In vivo assessments showed the great importance of HUMSCs for osteogneic differentiation. Ultimately, direct promotion of early osteo-differentiation manifested as upregulation of Runx-2 gene expression. The vascularization capability was evaluated by tube formation assays, demonstrating the importance of HUMSCs in the microunits for angiogenesis. CONCLUSIONS: The modification of growth factors and HUMSCs showed ideal biocompatibility and osteogenesis combined with nHA/PLGA scaffolds. The micromodules constructed in the current study provide an efficient stem cell therapy strategy for bone defect repair.

8.
Nanoscale ; 15(8): 4123-4136, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36744952

ABSTRACT

Magnetically actuated mechanical stimulation, as a novel form of intelligent responsive force stimulation, has a great potential for remote spatiotemporal regulation of a variety of life processes. Hence, the optimal design of magnetic nanomaterials for generating magneto-mechanical stimuli becomes an important driving force in the development of magneto-controlled biotherapy. This study aims to clarify the general rule that the surface modification amount of magnetic nanoparticles (NPs) affects the biological behavior (e.g., cell adhesion, proliferation and differentiation) of pre-osteoblast cells. First of all, course-grained molecular dynamics simulations predict that 23.3% graft modification of the NPs can maximize the heterogeneity of the dynamics of the polymer matrix, which may generate enhanced mechanical stimuli. Then, experimentally, iron oxide (IO) NPs grafted with different amounts of poly(γ-benzyl-L-glutamate) (PBLG) were prepared to obtain homogeneous magnetic nanocomposites with improved mechanical properties. Further in vitro cell experiments demonstrate that the grafting amounts of 21.46% and 32.34% of PBLG on IO NPs are the most beneficial for the adhesion and osteogenic differentiation of cells. Simultaneously, the maximized upregulation of the Piezo1 gene indicates that the cells receive the strongest magneto-mechanical stimuli. The consistent conclusion of the experiments and simulations indicates that 20-30% PBLG grafted on the IO surface could maximize the ability of magnetic stimuli to regulate the biological behavior of the cells, which validates the feasibility of simulation auxiliary material design and is of great importance for promoting the application of magneto-controlled biotherapy in bioengineering and biomedicine.


Subject(s)
Nanocomposites , Osteogenesis , Polymers , Osteoblasts , Magnetic Phenomena
9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768355

ABSTRACT

In order to achieve smart biomedical micro/nanomaterials, promote interaction with biomolecules, improve osteogenic/chondrogenic differentiation, exhibit better dispersion in bone implants and ultimately maximize functionality, we innovatively and successfully designed and synthesized polymer PBLG-modified GdPO4·H2O nanobunches by hydroxylation, silylation and glutamylation processes. The effects of different feeding ratios on the surface coating of GdPO4·H2O with Si-OH, the grafting γ-aminopropyltriethoxysilane (APS) and the in situ ring-opening polymerization reaction of poly(g-benzyl-L-glutamate) (PBLG) were investigated, and the physical and chemical properties were characterized in detail. When GdPO4·H2O@SiO2-APS:NCA = 4:1, the PBLG-g-GdPO4·H2O grafting rate was 5.93%, with good stability and dispersion in degradable polymeric materials. However, the MRI imaging signal was sequentially weakened as the modification process proceeded. Despite this, the biological effects had surprising findings. All the modifiers at appropriate concentrations were biocompatible and biologically active and the biomacromolecules of COL I and COL II in particular were expressed at least 3 times higher in GdPO4·H2O@SiO2 compared to the PLGA. This indicates that the appropriate surface modification and functionalization of gadolinium-containing micro/nanomaterials can promote interaction with cells and encourage bone regeneration by regulating biomacromolecules and can be used in the field of biomedical materials.


Subject(s)
Gadolinium , Osteogenesis , Gadolinium/pharmacology , Chondrogenesis , Phosphates/pharmacology , Silicon Dioxide/pharmacology , Cell Differentiation , Glutamic Acid/pharmacology , Polymers/chemistry , Tissue Scaffolds/chemistry
10.
ACS Biomater Sci Eng ; 9(3): 1541-1557, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36758235

ABSTRACT

In addition to biocompatibility and bioactivity, scaffolds with superior bone tissue regenerative capacity should possess excellent functionality (e.g., electroactivity and conductivity) and biodegradability matching with the rate of bone reconstruction. However, current conductive scaffolds display a reduced biodegradability rate and weakened biocompatibility. In this study, injectable conductive porous scaffolds were fabricated, incorporating camphor sulfonic acid-doped polyaniline (PANI) into hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) scaffolds, using solvent-casting/particulate-leaching methodology. These scaffolds demonstrated excellent electroactivity, conductivity, hydrophilicity, thermodynamic properties, antibacterial properties, and biocompatibility. Their degradation behavior was explored by regulating the PANI content. The results demonstrated that adding an appropriate content of PANI would increase the pore size, porosity, and water absorption of the conductive scaffold and promote the formation of filamentous fiber byproducts with acidic hydrolysates, which accelerated the degradation rate of the scaffold. Owing to π-π stacking and hydrogen bonding, the conductive scaffold with 10 wt % PANI efficiently retarded the decrease in the thermal and mechanical properties of the scaffolds during a 16 week degradation. Thus, better regulation of degradation behavior and correlation would allow conductive porous scaffolds, such as bone implants, to achieve better bone ingrowth and restoration.


Subject(s)
Durapatite , Tissue Engineering , Tissue Engineering/methods , Tissue Scaffolds , Polyglactin 910 , Porosity , Bone and Bones
11.
Front Bioeng Biotechnol ; 11: 1310017, 2023.
Article in English | MEDLINE | ID: mdl-38268940

ABSTRACT

Introduction: An ideal bone repair scaffold should have dual functions of osteoinductive ability and in vivo imaging. In this study, the simultaneous substitution of silicon (Si) and gadolinium (Gd) in hydroxyapatite (HA) as potential multifunctional bone graft materials has been successfully developed. Methods: A series of HA nanoparticles (HA NPs) doped with different proportions of Si and Gd were prepared. The chemical structure and phase composition of the materials were analyzed using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The microstructure, magnetic properties, surface potential, and cytotoxicity of the materials were also analyzed. The magnetic resonance imaging (MRI) effect of Gd&Si-HA/poly(lactic-co-glycolic acid) (Gd&Si-HA/PLGA) composite materials was evaluated. Osteogenic-related gene expression, alkaline phosphatase (ALP) level, and mineralization capacity of MC3T3-E1 cultured on Gd&Si-HA/PLGA composite materials were also detected. Results and Discussion: The 1.5Gd&Si-HA@PLGA group showed good ability to promote osteogenic differentiation of cells. The MRI effect of the 1.5Gd&Si-HA@PLGA scaffold was observable. This HA material containing Si and Gd co-doping has a broad application prospect in the field of bone tissue engineering owing to its ability to enhance osteoinductive property and improve MRI effect.

12.
Int J Nanomedicine ; 17: 4829-4842, 2022.
Article in English | MEDLINE | ID: mdl-36246935

ABSTRACT

Introduction: As a popular dietary supplement containing sulfur compound, methylsulfonylmethane (MSM) has been widely used as an alternative oral medicine to relieve joint pain, reduce inflammation and promote collagen protein synthesis. However, it is rarely used in developing bioactive scaffolds in bone tissue engineering. Methods: Three-dimensional (3D) hydroxyapatite/poly (lactide-co-glycolide) (HA/PLGA) porous scaffolds with different doping levels of MSM were prepared using the phase separation method. MSM loading efficiency, in vitro drug release as well as the biological activity of MSM-loaded scaffolds were investigated by incubating mouse pre-osteoblasts (MC3T3-E1) in the uniform and interconnected porous scaffolds. Results: Sustained release of MSM from the scaffolds was observed, and the total MSM release from 1% and 10% MSM/HA/PLGA scaffolds within 16 days was up to 64.9% and 68.2%, respectively. Cell viability, proliferation, and alkaline phosphatase (ALP) activity were significantly promoted by incorporating 0.1% of MSM in the scaffolds. In vivo bone formation ability was significantly enhanced for 1% MSM/HA/PLGA scaffolds indicated by the repair of rabbit radius defects which might be affected by a stimulated release of MSM by enzyme systems in vivo. Discussion: Finding from this study revealed that the incorporation of MSM would be effective in improving the osteogenesis activity of the HA/PLGA porous scaffolds.


Subject(s)
Alkaline Phosphatase , Tissue Scaffolds , Alkaline Phosphatase/metabolism , Animals , Bone Regeneration , Collagen/pharmacology , Delayed-Action Preparations/pharmacology , Dimethyl Sulfoxide , Durapatite/pharmacology , Mice , Osteogenesis , Porosity , Rabbits , Sulfones , Sulfur Compounds/pharmacology , Tissue Engineering/methods
13.
Front Bioeng Biotechnol ; 10: 988300, 2022.
Article in English | MEDLINE | ID: mdl-36110316

ABSTRACT

The endogenous electrical potential generated by native bone and periosteum plays a key role in maintaining bone mass and quality. Inspired by the electrical properties of bone, different negative surface potentials are built on microspheres to restore electric microenvironment for powerful bone regeneration, which was prepared by the combination of strontium-doped barium titanate (Sr-BTO) nanoparticles and poly (lactic-co-glycolic acid) (PLGA) with high electrostatic voltage field (HEV). The surface potential was modulated through regulating the phase composition of nanoparticles in microspheres by the doping amount of strontium ion (Sr2+). As a result, the 0.1Sr-BTO/PLGA group shows the lowest surface potential and its relative permittivity is closer to natural bone. As expected, the 0.1Sr-BTO/PLGA microspheres performed cytocompatibility, osteogenic activity in vitro and enhance bone regeneration in vivo. Furthermore, the potential mechanism of Sr-BTO/PLGA microspheres to promote osteogenic differentiation was further explored. The lower surface potential generated on Sr-BTO/PLGA microspheres regulates cell membrane potential and leads to an increase in the intracellular calcium ion (Ca2+) concentration, which could activate the Calcineurin (CaN)/Nuclear factor of activated T-cells (NFAT) signaling pathway to promote osteogenic differentiation. This study established an effective method to modulate the surface potential, which provides a prospective exploration for electrical stimulation therapy. The 0.1Sr-BTO/PLGA microsphere with lower surface potential and bone-matched dielectric constant is expected to have great potential in the field of bone regeneration.

14.
J Mater Chem B ; 10(38): 7808-7826, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36069314

ABSTRACT

Wound healing is a complex process. Wound-repair materials require multiple functionalities, such as anti-inflammatory, antibacterial, angiogenesis, pro-proliferation, and remodeling. To achieve rapid tissue regeneration, magnetic field-assisted therapy has become a promising means. In this study, a homogeneous magnetic responsive nanocomposite hydrogel with enhanced mechanical properties was obtained through a tannin (TA)-assisted bridge between magneto-deformable cobalt ferrite nanoparticles (CFO NPs) and polyvinyl alcohol (PVA) matrix. In the presence of an external static magnetic field (SMF), the TA bridge could efficiently transmit magnetically actuated deformation to the PVA, which originated from the CFO NPs, generating a larger topographic change on the surface. The change of topography provided a mechanical cue to increase cell adhesion and proliferation. Moreover, due to the synergistic effects of TA modification and CFO NPs, the obtained magnetic responsive hydrogel exhibited considerable antibacterial activity. Furthermore, the results of in vivo study confirmed the anti-inflammatory properties of the TA-CFO/PVA hydrogel. More importantly, the TA-CFO/PVA hydrogel accelerated wound healing under a SMF, which contributed to the early vascularization induced by mechanical stimuli generated from the TA-CFO/PVA nanocomposite hydrogel. As a proof-of-concept, we provided an optimizing strategy for magneto-controlled skin tissue regeneration, which may have important guiding significance for the clinical application of magnetic field-assisted therapy.


Subject(s)
Hydrogels , Polyvinyl Alcohol , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Hydrogels/pharmacology , Magnetic Phenomena , Nanogels , Polyvinyl Alcohol/pharmacology , Tannins/pharmacology , Wound Healing
15.
Colloids Surf B Biointerfaces ; 218: 112731, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35917689

ABSTRACT

Nerve implants functionalized with growth factors and stem cells are critical to promote neurite outgrowth, regulate neurodifferentiation, and facilitate nerve regeneration. In this study, human umbilical cord mesenchymal stem cells (hUCMSCs) and 3,4-hydroxyphenalyalanine (DOPA)-containing insulin-like growth factor 1 (DOPA-IGF-1) were simultaneously applied to enhance the bioactivity of poly(lactide-co-glycolide) (PLGA) substrates which will be potentially utilized as nerve implants. In vitro and in vivo evaluations indicated that hUCMSCs and DOPA-IGF-1 could synergistically regulate neurite outgrowth of PC12 cells, improve intravital recovery of motor functions, and promote conduction of nerve electrical signals in vivo. The enhanced functional and structural nerve regeneration of injured spinal cord might be mainly attributable to the synergistically enhanced biofunctionality of hUCMSCs and DOPA-IGF-1/PLGA on the bioactive interfaces. Findings from this study demonstrate the potential of hUCMSC-seeded, DOPA-IGF-1-modified PLGA implants as promising candidates for promoting axonal regeneration and motor functional recovery in spinal cord injury treatment.


Subject(s)
Insulin-Like Growth Factor I , Spinal Cord Injuries , Animals , Dihydroxyphenylalanine , Humans , Insulin-Like Growth Factor I/pharmacology , Nerve Regeneration/physiology , Neuronal Outgrowth , Polyglactin 910 , Rats , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy
16.
Acta Biomater ; 150: 67-82, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35842032

ABSTRACT

Stem cell treatment is vital for recovery from traumatic brain injury (TBI). However, severe TBI usually leads to excessive inflammation and neuroinhibitory factors in the injured brain, resulting in poor neural cell survival and uncontrolled formation of glial scars. In this study, a bioorthogonal microenvironment was constructed on biodegradable poly(lactide-co-glycolide) (PLGA) microcarriers through immobilization of mussel-inspired bioorthogonal 3,4-dihydroxyphenylalanine-containing recombinant nerve growth factor (DOPA-NGF) and human umbilical cord mesenchymal stem cells (hUMSCs) for minimally invasive therapy of TBI. Cell culture and RNA-seq analysis revealed enhanced extracellular matrix (ECM) secretion and viability of hUMSCs on PLGA microcarriers compared to 2D culture. Immobilized DOPA-NGF further promoted adhesion, proliferation, and gene expression in RSC96 neurotrophic cells and hUMSCs. Specifically, the neurotrophin receptor of NT-3 (NTRK3) in hUMSCs was activated by DOPA-NGF, leading to MYC transcription and paracrine enhancement to build an adjustable biomimetic microenvironment. After transplantation of microunits in animal models, the motor and learning-memory ability of TBI mice were improved through rollbacks of overactivated inflammatory reaction regulation, neuronal death, and glial scar formation after injury. This was attributed to the paracrine enhancement of hUMSCs activated by the DOPA-NGF. Our study provides a neural regenerative microenvironment-based therapeutic strategy to advance the effects of transplanted hUMSCs in cell-based regenerative medicine for TBI therapy. STATEMENT OF SIGNIFICANCE: Extensive studies have demonstrated the importance of the microenvironment for posttraumatic brain injury recovery. However, an efficient method that can mimic the neural regenerative microenvironment to strengthen stem cell therapy and brain injury recovery is still absent. In this study, the minimally invasive transplantation of DOPA-NGF immobilized biodegradable microcarriers with mesenchymal stem cells was found to be an effective method for regeneration of injured brain. Moreover, transcriptome analysis revealed that neurotrophin receptor of NT-3 (NTRK3) was activated by DOPA-NGF for MYC transcription and paracrine enhancement to build a kind of adjustable biomimetic microenvironment for brain injury therapy. This study provides a neural regenerative microenvironment-based therapeutic strategy to advance the transplanted hUMSCs in cell-based regenerative medicine for neural recovery.


Subject(s)
Brain Injuries, Traumatic , Mesenchymal Stem Cell Transplantation , Animals , Brain Injuries, Traumatic/therapy , Dihydroxyphenylalanine , Gliosis , Humans , Mesenchymal Stem Cell Transplantation/methods , Mice , Nerve Growth Factor/pharmacology , Receptors, Nerve Growth Factor , Tissue Engineering
17.
Front Bioeng Biotechnol ; 10: 873125, 2022.
Article in English | MEDLINE | ID: mdl-35497366

ABSTRACT

Mesenchymal stem cells (MSCs) have considerable value in regenerative medicine because of their unique properties such as pluripotency, self-renewal ability, and low immunogenicity. Isolation and purification are prerequisites for various biomedical applications of MSCs, and traditional sorting methods are often expensive, complicated, and difficult to apply on a large scale. In addition to purification, the requirement for expansion of cells also limits the further application of MSCs. The purpose of this study was to develop a unique magnetic sorting microsphere to obtain relatively pure and high-yield MSCs in an economical and effective way, that can also be used for the expansion of MSCs. Poly (ethylene glycol) (PEG)-based anti-adhesive treatment of the prepared oleic acid grafted Fe3O4-poly (lactic-co-glycolic acid) magnetic microspheres was performed, and then E7 peptide was covalently grafted onto the treated microspheres. Upon a series of characterization, the magnetic microspheres were of uniform size, and cells were unable to adhere to the PEG-treated surface. E7 grafting significantly improved cell adhesion and proliferation. The results obtained from separate culture of various cell types as well as static or dynamic co-culture showed that selective adhesion of MSCs was observed on the magnetic sorting microspheres. Furthermore, the cells expanded on the microspheres maintained their phenotype and typical differentiation potentials. The magnetic properties of the microspheres enabled sampling, distribution, and transfer of cells without the usage of trypsin digestion. And it facilitated the separation of cells and microspheres for harvesting of MSCs after digestion. These findings have promising prospects for MSC research and clinical applications.

18.
Front Bioeng Biotechnol ; 10: 824025, 2022.
Article in English | MEDLINE | ID: mdl-35464719

ABSTRACT

Multifunctionality has becoming essential for bone tissue engineering materials, such as drug release. In this study, icariin (ICA)-incorporated poly(glycolide-co-caprolactone) (PGCL) porous microcarriers were fabricated and then coated with decellularized extracellular matrix (dECM) which was derived from bone marrow mesenchymal stem cells (BMSC). The porous structure was generated due to the soluble gelatin within the microcarriers. The initial released ICA in microcarriers regulated osteogenic ECM production by BMSCs during ECM formation. The dECM could further synergistically enhance the migration and osteogenic differentiation of BMSCs together with ICA as indicated by the transwell migration assay, ALP and ARS staining, as well as gene and protein expression. Furthermore, in vivo results also showed that dECM and ICA exhibited excellent synergistic effects in repairing rat calvarial defects. These findings suggest that the porous microcarriers loaded with ICA and dECM coatings have great potential in the field of bone tissue engineering.

19.
J Mater Chem B ; 9(43): 9055-9066, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34673872

ABSTRACT

Single-modal magnetic resonance imaging (MRI) contrast agents sometimes cause signal confusion in clinical diagnosis. Utilizing ligands to endow iron oxide nanoparticles (IO NPs) with excellent dual-modal MRI contrast efficiency might be an effective strategy to improve diagnostic accuracy. This work presents the development of a special ligand-assisted one-pot approach for the preparation of super-hydrophilic magnetic NPs with excellent water dispersion, biocompatibility and T1-T2 dual-modal contrast enhancement properties. In addition, the strong binding capacity between the ethylenediamine tetramethylenephosphonic acid (EDTMP) ligand and water molecules induced by the presence of abundant hydrogen bonds significantly improves spin-lattice (T1) and spin-spin (T2) imaging of the IO core. After being modified with the EDTMP ligand, the T2 relaxation rate of the IO core is dramatically increased from 71.78 mM-1 s-1 to 452.38 mM-1 s-1, and a moderate T1 relaxation rate (11.61 mM-1 s-1) is observed simultaneously, implying that the NPs with an average size of 9.7 nm may be potential candidates as high-efficiency T1-T2 MRI contrast agents. This fundamental technique of using super-hydrophilicity ligands to endow IO NPs with dual-modal contrast properties without size change and damage in the T2 contrast effect may provide a useful strategy to facilitate the application of magnetic NPs in the field of medical diagnosis.


Subject(s)
Biocompatible Materials/chemistry , Contrast Media/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging , Organophosphorus Compounds/chemistry , Water/chemistry , 3T3 Cells , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemical synthesis , Contrast Media/administration & dosage , Contrast Media/chemical synthesis , Hemolysis , Ligands , Magnetic Iron Oxide Nanoparticles/administration & dosage , Mice , Organophosphorus Compounds/administration & dosage , Particle Size , Surface Properties
20.
Mater Sci Eng C Mater Biol Appl ; 128: 112267, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474826

ABSTRACT

Accurate and rapid quantitation of cell attachment, spreading, and growth on a polymer thin film coated glass cover slide was developed by analyzing the digital images of cells stained with dyes. A biodegradable block copolymer poly(ethylene glycol)-block-poly(l-lactide-co-2-methyl-2-carboxyl-propylene carbonate) [PEG-b-P(LA-co-MCC)] was synthesized as model polymer with poly(L-lactic acid) [PLLA] as a control polymer. Only a small quantity of polymer (~5 mg) was needed in this method through dissolving in a solvent and casting on cover slides which were previously modified with dimethyl dichlorosilane (DMDC). Then it was seeded with cells and taken pictures with a digital camera under an optical microscope and analyzed with ImageJ software. Cell number and a series of morphological data were obtained, including cell area, circularity, perimeter and Feret's diameter, etc. The quantitative analysis results indicated that cells preferred to attach and spread on the surface of the copolymer PEG-b-P(LA-co-MCC) compared to PLLA during 24 h of cell culture. This efficient procedure provides a series of convincing statistical data to evaluate the direct interaction between cells and polymers with only an optical microscope, a digital camera and ImageJ software. It's a rapid, economic way for assessing cell affinity and compatibility of novel synthetic polymers by cell culture in vitro.


Subject(s)
Polyesters , Polymers , Cell-Matrix Junctions , Cells, Cultured , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL
...