Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 647: 306-317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37262993

ABSTRACT

Emerging aqueous zinc-ion hybrid capacitors (AZICs) are considered a promising energy storage because of their superior electrochemical performance. The pore structure, suitable heteroatom content, and graphitization degree (GD) of carbon-based cathodes significantly influence the electrochemical performance of AZICs. The N, S dual-doped porous graphitic carbon materials (LC-750) with the combined characteristics of high GD (1.11) and large specific surface area (1678.38 m2 g-1) are successfully developed by a facile "killing two birds with one stone" strategy using K3Fe(C2O4)3·3H2O as the activating and graphitizing agent, and waste sponge (WS) and coal tar pitch (CTP) as the heteroatom and carbon resource, respectively. Results show that the LC-750 cathode displays high capacities of 185.3 and 95.2 mAh g-1 at 0.2 and 10 A g-1. Specifically, the assembled LC-750//Zn capacitor can offer a maximal energy density of 119.5 Wh kg-1, a power density of 20.3 kW kg-1, and a capacity retention of 87.8% after 15,000 cycles at 10 A g-1. Density functional theory simulations demonstrate that N and S dual-doping can promote the adsorption kinetics of Zn ions. This design strategy is a feasible and cost-effective method for the preparation of dual heteroatom-doped graphitic carbon electrodes, which enables recycling of WS and CTP into high-valued products.

2.
Angew Chem Int Ed Engl ; 62(11): e202216950, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36625196

ABSTRACT

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

3.
ACS Appl Mater Interfaces ; 15(2): 2940-2950, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598797

ABSTRACT

The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.

4.
Small ; 18(48): e2204836, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36251775

ABSTRACT

The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries.

5.
Adv Mater ; 34(23): e2201716, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35435291

ABSTRACT

Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries.

6.
Dalton Trans ; 50(46): 17265-17274, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34787163

ABSTRACT

Electrochemical water splitting is convinced as one of the most promising solutions to combat the energy crisis. The exploitation of efficient hydrogen and oxygen evolution reaction (HER/OER) bifunctional electrocatalysts is undoubtedly a vital spark yet challenging for imperative green sustainable energy. Herein, through introducing a simple pH regulated redox reaction into a tractable hydrothermal procedure, a hierarchical Fe3O4@MnOx binary metal oxide core-shell nano-polyhedron was designed by evolving MnOx wrapped Fe3O4. The MnOx effectively prevents the agglomeration and surface oxidation of Fe3O4 nano-particles and increases the electrochemically active sites. Benefiting from the generous active sites and synergistic effects of Fe3O4 and MnOx, the Fe3O4@MnOx-NF nanocomposite implements efficient HER/OER bifunctional electrocatalytic performance and overall water splitting. As a result, hierarchical Fe3O4@MnOx only requires a low HER/OER overpotential of 242/188 mV to deliver 10 mA cm-2, a small Tafel slope of 116.4/77.6 mV dec-1, combining a long-term cyclability of 5 h. Impressively, by applying Fe3O4@MnOx as an independent cathode and anode, the overall water splitting cell supplies a competitive voltage of 1.64 V to achieve 10 mA cm-2 and super long cyclability of 80 h. These results reveal that this material is a promising candidate for practical water electrolysis application.

7.
Angew Chem Int Ed Engl ; 60(51): 26829-26836, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34658135

ABSTRACT

Defects have been found to enhance the electrocatalytic performance of NiFe-LDH for oxygen evolution reaction (OER). Nevertheless, their specific configuration and the role played in regulating the surface reconstruction of electrocatalysts remain ambiguous. Herein, cationic vacancy defects are generated via aprotic-solvent-solvation-induced leaking of metal cations from NiFe-LDH nanosheets. DFT calculation and in situ Raman spectroscopic observation both reveal that the as-generated cationic vacancy defects tend to exist as VM (M=Ni/Fe); under increasing applied voltage, they tend to assume the configuration VMOH , and eventually transform into VMOH-H which is the most active yet most difficult to form thermodynamically. Meanwhile, with increasing voltage the surface crystalline Ni(OH)x in the NiFe-LDH is gradually converted into disordered status; under sufficiently high voltage when oxygen bubbles start to evolve, local NiOOH species become appearing, which is the residual product from the formation of vacancy VMOH-H . Thus, we demonstrate that the cationic defects evolve along with increasing applied voltage (VM → VMOH → VMOH-H ), and reveal the essential motif for the surface restructuration process of NiFe-LDH (crystalline Ni(OH)x → disordered Ni(OH)x → NiOOH). Our work provides insight into defect-induced surface restructuration behaviors of NiFe-LDH as a typical precatalyst for efficient OER electrocatalysis.

8.
ACS Appl Mater Interfaces ; 12(39): 43624-43633, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32876427

ABSTRACT

Cubic N,S codoped carbon coating MnS-FeS2 composites (MnS-FeS2@NSC) with a hollow structure were prepared and used as anode materials for sodium-ion batteries. MnS-FeS2@NSC exhibits excellent cycle performance and high rate capability and delivered a reversible capacity of 501.0 mAh g-1 after 800 cycles at a current density of 0.1 A g-1 with a capacity retention of 81%. More importantly, the MnS-FeS2@NSC anode holds long-term cycle stability; the capacity can remain 134.0 mAh g-1 after 14 500 cycles at 4 A g-1. Kinetic analysis demonstrated that Na+ storage follows a pseudocapacitive dominating process, which is ascribed to the origin of the outstanding rate performance of the MnS-FeS2@NSC material. The enhancement of electrochemical performance is attributed to the hollow structure and the N,S codoped carbon coating structure, which can reduce the diffusion distance for sodium ions and electrons, alleviate volume expansion during sodium-ion insertion/extraction, and retain the structural integrity effectively. Furthermore, a two-step sodiation processes with FeS2 sodiation prior to MnS was demonstrated by X-ray diffraction (XRD), and the electrochemical impedance spectroscopy (EIS) spectra might indicate that the accumulation of the metallic elements in the preconversion reaction can accelerate the transfer of electrons and ions in the further conversion process.

9.
ACS Appl Mater Interfaces ; 10(17): 14602-14613, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29565123

ABSTRACT

Reasonable design and synthesis of Fe/N/C-based catalysts is one of the most promising way for developing precious metal-free oxygen reduction reaction (ORR) catalysts in acidic mediums. Herein, we developed a highly active metal-organic framework-derived S-doped Fe/N/C catalyst [S-Fe/Z8/2-aminothiazole (2-AT)] prepared by thermal treatment. The S-Fe/Z8/2-AT catalyst with uniform S-doping possesses a three-dimensional macro-meso-micro hierarchically porous structure. Moreover, the chemical composition and structural features have been well-optimized and characterized for such S-Fe/Z8/2-AT catalysts; and their formation mechanism was also revealed. Significantly, applying the optimal S-Fe/Z8/2-AT catalysts into electrocatalytic test exhibits remarkable ORR catalytic activity with a half-wave potential of 0.82 V (vs reversible hydrogen electrode) and a mass activity of 18.3 A g-1 at 0.8 V in 0.1 M H2SO4 solution; the polymer electrolyte membrane fuel cell test also confirmed their excellent catalytic activity, which gives a maximal power density as high as 800 mW cm-2 at 1 bar. A series of designed experiments disclosed that the favorable structural merits and desirable chemical compositions of S-Fe/Z8/2-AT catalysts are critical factors for efficient electrocatalytic performance. The work provides a new approach to open an avenue for accurately controlling the composition and structure of Fe/N/C catalysts with highly activity for ORR.

SELECTION OF CITATIONS
SEARCH DETAIL
...