Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.287
Filter
1.
Mater Horiz ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932648

ABSTRACT

Reversible adhesion with on-demand attachment and detachment is used by many animals for their locomotion. However, achieving robust and switchable adhesion on rough surfaces in artificial adhesives remains a significant challenge. Here, we present a snail mucus-inspired touch-initiate adhesive (TIA), showing robust adhesions on various surfaces. TIA is a polymeric hydrogel photo-cured with the presence of supersaturated sodium acetate (NaAc) in the precursor solution. TIA is soft and flexible at room temperature, allowing it to form conformal contact with objects with various surfaces. The contact with the target surface immediately initiates the crystallization of TIA, increasing the elastic modulus of TIA by an order of magnitude. The increased modulus and the interlocking with the target surfaces thus results in an adhesion strength up to 465.56 ± 84.05 kPa. TIA can be easily detached from the surface by heating to a temperature above 58 °C, showing an adhesion strength of 12.71 ± 2.73 kPa. The detached TIA, even cooled down to and kept at room temperature, is readily used for the subsequent adhesion. The study here not only provides a highly adhesive material for on-demand attachment to various surfaces, but also proposes a new design strategy to compose smart materials.

2.
Front Physiol ; 15: 1403391, 2024.
Article in English | MEDLINE | ID: mdl-38938746

ABSTRACT

Monopterus albus is one of China's renowned and superior aquaculture species, with its seedlings mainly sourced from wild capture. One of the bottlenecks in M. albus aquaculture is the high mortality rate and low feeding initiation rate from stocking wild fry to the initiation of feeding. In production, trash fish is commonly used to wean M. albus juveniles onto feeding. In this study, we introduced three other natural feeds, earthworms (EW), yellow mealworms (YMW), and fly maggots (FM), with frozen trash fish (TF) serving as the control group, to evaluate the effects of these four natural feeds on the survival rate, feeding initiation, antioxidant enzymes activity, and body composition of M. albus juveniles under recirculating water aquaculture conditions. The experiment comprised four treatments, each with three replicates. Each replicate consisted of stocking 150 M. albus juveniles weighing 10.02 ± 0.89 g in size, raised for 5 weeks. The survival rate of the YMW group was 73.33%-85.33%, which was significantly higher than that of the other three bait groups (p < 0.05). The four bait groups showed no significant differences in final body weight and specific growth rate (SGR) (p > 0.05). The EW group showed the highest final body weight, with an average SGR of 2.73, whereas the YMW group had an average SGR of 1.87. The average daily feeding amount was significantly higher in EW and YMW groups than in the other two groups (p < 0.05). The percentage of feeding amount to fish weight in the EW group reached 7.3% in the fifth week. After 5 weeks of cultivation, NO2 --N content was significantly higher in the waters of the TF and EW groups than in the waters of the FM and YMW groups (p < 0.05), there was no significant difference in TAN content among the treatment groups (p > 0.05). Liver malondialdehyde content was significantly higher in the TF group than in the other bait groups (p < 0.05). GSH-Px activity was significantly higher in the EW group than in the FM group and YMW group. No significant differences in SOD and CAT activity and T-AOC were observed among the bait groups (p > 0.05). The increase in crude protein content was significantly higher in the TF group than in the FM group, but the increase in crude ash content was significantly lower in the TFgroup. In conclusion, Tenebrio molitor could potentially serve as one of the alternative feeds during the initial stages of M. albus juveniles stocking.

3.
Front Genet ; 15: 1296533, 2024.
Article in English | MEDLINE | ID: mdl-38919951

ABSTRACT

Small RNAs (sRNAs) are important non-coding RNA regulators that play key roles in the development and pathogenesis of plant pathogens, as well as in other biological processes. However, whether these abundant and varying sRNAs are involved in Phytophthora development or infection remains enigmatic. In this study, sRNA sequencing of 4 asexual stages of Phytophthora capsici (P. capsici), namely, as mycelia (HY), sporangia (SP), zoospores (ZO), cysts (CY), and pepper infected with P. capsici (IN), were performed, followed by sRNA analysis, microRNA (miRNA) identification, and miRNA target prediction. sRNAs were mainly distributed at 25-26 nt in HY, SP, and ZO but distributed at 18-34 nt in CY and IN. 92, 42, 176, 39, and 148 known miRNAs and 15, 19, 54, 13, and 1 novel miRNA were identified in HY, SP, ZO, CY, and IN, respectively. It was found that the expression profiles of known miRNAs vary greatly at different stages and could be divided into 4 categories. Novel miRNAs mostly belong to part I. Gene ontology (GO) analysis of known miRNA-targeting genes showed that they are involved in the catalytic activity pathway, binding function, and other biological processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis of novel miRNA-targeting genes showed that they are involved in the lysine degradation pathway. The expression of candidate miRNAs was validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and miRNAs were downregulated in PcDCL1 or PcAGO1 mutants. To further explore the function of the detected miRNAs, the precursor of a novel miRNA, miR91, was knockout by CRISPR-Cas9, the mutants displayed decreased mycelial growth, sporangia production, and zoospore production. It was found that 503142 (Inositol polyphosphate 5-phosphatase and related proteins) can be predicted as a target of miR91, and the interaction between miR91 and 503142 was verified using the tobacco transient expression system. Overall, our results indicate that the diverse and differentially expressed sRNAs are involved in the development and pathogenesis of P. capsici.

4.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842462

ABSTRACT

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

5.
Nat Commun ; 15(1): 5193, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890366

ABSTRACT

Multichannel meta-imaging, inspired by the parallel-processing capability of neuromorphic computing, offers considerable advancements in resolution enhancement and edge discrimination in imaging systems, extending even into the mid- to far-infrared spectrum. Currently typical multichannel infrared imaging systems consist of separating optical gratings or merging multi-cameras, which require complex circuit design and heavy power consumption, hindering the implementation of advanced human-eye-like imagers. Here, we present printable graphene plasmonic photodetector arrays driven by a ferroelectric superdomain for multichannel meta-infrared imaging with enhanced edge discrimination. The fabricated photodetectors exhibited multiple spectral responses with zero-bias operation by directly rescaling the ferroelectric superdomain instead of reconstructing the separated gratings. We also demonstrated enhanced and faster shape classification (98.1%) and edge detection (98.2%) using our multichannel infrared images compared with single-channel detectors. Our proof-of-concept photodetector arrays simplify multichannel infrared imaging systems and offer potential solutions in efficient edge detection in human-brain-type machine vision.

6.
ACS Nano ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902201

ABSTRACT

Two-dimensional (2D) van der Waals (vdWs) heterojunctions have been actively investigated in low-power-consumption and fast-response photodiodes owing to their atomically smooth interfaces and ultrafast interfacial charge transfer. However, achieving ultralow dark current and ultrafast photoresponse in the reported photovoltaic devices remains a challenge as the large built-in electric field in a heterojunction can not only speed up photocarrier transport but also increase the minority-carrier dark current. Here, we propose a high-spike barrier photodiode that can achieve both an ultralow dark current and an ultrafast response. The device is fabricated by the Te/WS2 heterojunction, while the band alignment can transition from type-II to type-I with a high electron barrier and a large hole built-in electronic field. The high electron barrier can greatly reduce the drift current of minority carriers and the generation current of the thermal carriers, while the large built-in electronic field can still speed up the photocarrier transport. The designed Te/WS2 vdWs photodiode yields an ultralow dark current of 8 × 10-14 A and an ultrafast photoresponse of 10/13 µs. Furthermore, a high-performance visible-light imager with a pixel resolution of 100 × 40 is demonstrated using the Te/WS2 vdWs photodiode. This work provides a comprehensive understanding of designing 2D-material-based photovoltaics with excellent overall performance.

7.
Discov Nano ; 19(1): 99, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861224

ABSTRACT

Recently, the synthesis of oxidized holey graphene with the chemical formula C2O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C2O monolayer, and compared our findings with those of its C2N counterpart. Our analysis shows that while the C2N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C2O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C2N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C2O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C2O nanosheet presents significantly higher tensile strength compared to its C2N counterpart. MLIP-based calculations show that at room temperature, the C2O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C2O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.

8.
Nat Commun ; 15(1): 4978, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862537

ABSTRACT

The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.

9.
Quantum Front ; 3(1): 12, 2024.
Article in English | MEDLINE | ID: mdl-38855163

ABSTRACT

FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( T c ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of T c within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and T c has been observed here, namely, T c ∝ c - c 0 , where c is the c-axis lattice constant (and c 0 is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the d xy orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. Supplementary Information: The online version contains supplementary material available at 10.1007/s44214-024-00058-0.

10.
Small ; : e2401537, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822716

ABSTRACT

Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2 wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53 mV at the current density of 10 mA cm-2, a small Tafel slope of 37 mV dec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.

11.
Natl Sci Rev ; 11(7): nwae175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38883296

ABSTRACT

Anisotropy is a significant and prevalent characteristic of materials, conferring orientation-dependent properties, meaning that the creation of original symmetry enables key functionality that is not found in nature. Even with the advancements in atomic machining, synthesis of separated symmetry in different directions within a single structure remains an extraordinary challenge. Here, we successfully fabricate NiS ultrafine nanorods with separated symmetry along two directions. The atomic structure of the nanorod exhibits rotational symmetry in the radial direction, while its axial direction is characterized by divergent translational symmetry, surpassing the conventional crystalline structures known to date. It does not fit the traditional description of the space group and the point group in three dimensions, so we define it as a new structure in which translational symmetry and rotational symmetry are separated. Further corroborating the atomic symmetric separation in the electronic structure, we observed the combination of stripe and vortex magnetic domains in a single nanorod with different directions, in accordance with the atomic structure. The manipulation of nanostructure at the atomic level introduces a novel approach to regulate new properties finely, leading to the proposal of new nanotechnology mechanisms.

12.
Environ Sci Technol ; 58(22): 9770-9781, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781163

ABSTRACT

Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.


Subject(s)
Ferric Compounds , Ferric Compounds/chemistry
13.
Adv Mater ; : e2403674, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794827

ABSTRACT

High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.

14.
Adv Mater ; : e2402979, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811011

ABSTRACT

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

15.
Adv Mater ; : e2404640, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775475

ABSTRACT

Cathode materials of sodium-based batteries with high specific capacity and fast charge-discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, this work reports a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the density functional theory (DFT) guidance. This work reveals that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge-discharge cycling over a wide temperature range.

16.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696308

ABSTRACT

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Subject(s)
Carbon , Soil Pollutants , Soil , Soil/chemistry , Persistent Organic Pollutants , Environmental Monitoring , Arctic Regions , Ecosystem
17.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731293

ABSTRACT

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. ß-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS: A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of ß-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS: ß-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in ß-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. ß-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of ß-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS: ß-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.

18.
Small ; : e2401658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693074

ABSTRACT

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.

19.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
20.
J Hazard Mater ; 472: 134512, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38733783

ABSTRACT

This study investigated the occurrence, stereoisomeric behavior, and potential sources of hexabromocyclododecanes (HBCDs) in topsoil and terrestrial vegetation from Svalbard and ocean sediment samples from Kongsfjorden, an open fjord on the west coast of Spitsbergen. The mean levels of total concentrations (Σ3HBCDs) were comparable to those in other remote regions and were lower than those in source regions. Elevated proportions of α-HBCD with an average of 41% in the terrestrial samples and 25% in ocean sediments compared to those in commercial products (10-13% for α-HBCD) were observed, implying isomerization from γ- to α-HBCD in the Arctic environment. In addition, the extensive deviations of enantiomeric fractions (EFs) from the racemic values reflected the effect of biotransformation on HBCD accumulation. Linear correlation analysis, redundancy analysis, and back-trajectory were combined to infer possible HBCD sources, and the results showed the important role of global production and long-range environmental transport (LRET) for the entry of HBCDs into the Arctic at an early stage. To the best of our knowledge, this study represents the first report on the diastereoisomer- and enantiomer-specific profiles of HBCDs in the Arctic terrestrial environment and sheds light on the transport pathways and environmental fate for more effective risk management related to HBCDs in remote regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...