Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.276
Filter
1.
Small ; : e2401537, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822716

ABSTRACT

Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2 wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53 mV at the current density of 10 mA cm-2, a small Tafel slope of 37 mV dec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.

2.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731293

ABSTRACT

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. ß-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS: A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of ß-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS: ß-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in ß-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. ß-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of ß-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS: ß-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.

3.
Am Surg ; : 31348241253801, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708574

ABSTRACT

OBJECTIVE: The timely identification of both malignant and nonmalignant pancreatic lesions has the potential to significantly enhance prognosis and implement risk management strategies across various levels. microRNAs (miRs) and their corresponding targets play a crucial role in the development of pancreatic lesions and can serve as valuable diagnostic and therapeutic targets. The objective of our study was to investigate potential diagnostic markers that can effectively differentiate between malignant and nonmalignant pancreatic lesions. METHODS: Gene Expression Omnibus (GEO) database with GSE24279 dataset was utilized to screen differentially expressed miRNAs (DEMs). We utilized the TargetScanHuman database to predict the target genes associated with hsa-miR-150-3p, hsa-miR-150-5p, and hsa-miR-214-3p. Furthermore, a cohort comprising healthy individuals (n = 52), chronic pancreatitis (CP; n = 34), and pancreatic adenocarcinoma (PAAD; n = 53) patients was recruited to ascertain the levels of plasma markers. RESULTS: We identified 3 miRNAs (hsa-miR-150-3p, hsa-miR-150-5p, and hsa-miR-214-3p) and 2 proteins (PCDH1 and AMN) as potential diagnostic markers for distinguishing between CP and PAAD. The area under the curve (AUC) values for all markers exceeded .800. Notably, a combination of plasma PCDH1 and AMN demonstrated excellent diagnostic performance (AUC = .921; 95% CI: .866-.977; sensitivity = .792; specificity = .941) in discriminating between CP and PAAD. In addition, the model of hsa-miR-150-3p, hsa-miR-150-5p, and hsa-miR-214-3p yielded an AUC of .928, sensitivity of .830, and specificity of .912, respectively. CONCLUSION: Plasma levels of miRNAs (hsa-miR-150-3p, hsa-miR-150-5p, and hsa-miR-214-3p) and their corresponding targets (PCDH1 and AMN) hold promise as potential biomarkers for predicting PAAD in patients with CP.

4.
Small ; : e2401658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693074

ABSTRACT

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.

5.
Nat Commun ; 15(1): 4105, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750023

ABSTRACT

Molybdenum and its alloys are known for their superior strength among body-centered cubic materials. However, their widespread application is hindered by a significant decrease in ductility at lower temperatures. In this study, we demonstrate the achievement of exceptional ductility in a Mo alloy containing rare-earth La2O3 nanoparticles through rotary-swaging, a rarity in Mo-based materials. Our analysis reveals that the large ductility originates from substantial variations in the electronic density of states, a characteristic intrinsic to rare-earth elements. This characteristic can accelerate the generation of oxygen vacancies, facilitating the amorphization of the oxide-matrix interface. This process promotes vacancy absorption and modification of dislocation configurations. Furthermore, by inducing irregular shapes in the La2O3 nanoparticles through rotary-swaging, incoming dislocations interact with them, creating multiple dislocation sources near the interface. These dislocation sources act as potent initiators at even reduced temperatures, fostering diverse dislocation types and intricate networks, ultimately enhancing dislocation plasticity.

6.
Adv Mater ; : e2404640, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775475

ABSTRACT

Cathode materials of sodium-based batteries with high specific capacity and fast charge/discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, we report a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the DFT guidance. We reveal that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge/discharge cycling over a wide temperature range. This article is protected by copyright. All rights reserved.

7.
Biosensors (Basel) ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785687

ABSTRACT

The Wearable Robotic Limb (WRL) is a type of robotic arm worn on the human body, aiming to enhance the wearer's operational capabilities. However, proposing additional methods to control and perceive the WRL when human limbs are heavily occupied with primary tasks presents a challenge. Existing interactive methods, such as voice, gaze, and electromyography (EMG), have limitations in control precision and convenience. To address this, we have developed an interactive device that utilizes the mouth and tongue. This device is lightweight and compact, allowing wearers to achieve continuous motion and contact force control of the WRL. By using a tongue controller and mouth gas pressure sensor, wearers can control the WRL while also receiving sensitive contact feedback through changes in mouth pressure. To facilitate bidirectional interaction between the wearer and the WRL, we have devised an algorithm that divides WRL control into motion and force-position hybrid modes. In order to evaluate the performance of the device, we conducted an experiment with ten participants tasked with completing a pin-hole assembly task with the assistance of the WRL system. The results show that the device enables continuous control of the position and contact force of the WRL, with users perceiving feedback through mouth airflow resistance. However, the experiment also revealed some shortcomings of the device, including user fatigue and its impact on breathing. After experimental investigation, it was observed that fatigue levels can decrease with training. Experimental studies have revealed that fatigue levels can decrease with training. Furthermore, the limitations of the device have shown potential for improvement through structural enhancements. Overall, our mouth and tongue interactive device shows promising potential in controlling the WRL during tasks where human limbs are occupied.


Subject(s)
Mouth , Robotics , Tongue , Wearable Electronic Devices , Humans , Male , Adult , Electromyography
8.
Nano Lett ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781119

ABSTRACT

Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, which are remarkable nitride superconductors. The measurements of the crystal structures and electrical transport properties confirmed the high quality of these films. More importantly, from a combination of high-resolution angle-resolved photoelectron spectroscopy and first-principles calculations, the extracted Coulomb interaction strength of TiN films can be as large as 8.5 eV, whereas resonant photoemission spectroscopy yields a value of 6.26 eV. These large values of Coulomb interaction strength indicate that superconducting TiN is a strongly correlated system. Our results uncover the unexpected electronic correlations in transition-metal nitrides, potentially providing a perspective not only to understand their emergent quantum states but also to develop their applications in quantum devices.

9.
J Hazard Mater ; 472: 134512, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38733783

ABSTRACT

This study investigated the occurrence, stereoisomeric behavior, and potential sources of hexabromocyclododecanes (HBCDs) in topsoil and terrestrial vegetation from Svalbard and ocean sediment samples from Kongsfjorden, an open fjord on the west coast of Spitsbergen. The mean levels of total concentrations (Σ3HBCDs) were comparable to those in other remote regions and were lower than those in source regions. Elevated proportions of α-HBCD with an average of 41% in the terrestrial samples and 25% in ocean sediments compared to those in commercial products (10-13% for α-HBCD) were observed, implying isomerization from γ- to α-HBCD in the Arctic environment. In addition, the extensive deviations of enantiomeric fractions (EFs) from the racemic values reflected the effect of biotransformation on HBCD accumulation. Linear correlation analysis, redundancy analysis, and back-trajectory were combined to infer possible HBCD sources, and the results showed the important role of global production and long-range environmental transport (LRET) for the entry of HBCDs into the Arctic at an early stage. To the best of our knowledge, this study represents the first report on the diastereoisomer- and enantiomer-specific profiles of HBCDs in the Arctic terrestrial environment and sheds light on the transport pathways and environmental fate for more effective risk management related to HBCDs in remote regions.

10.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743874

ABSTRACT

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

11.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696308

ABSTRACT

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Subject(s)
Carbon , Soil Pollutants , Soil , Soil/chemistry , Persistent Organic Pollutants , Environmental Monitoring , Arctic Regions , Ecosystem
12.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697247

ABSTRACT

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Subject(s)
Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
13.
Adv Mater ; : e2403674, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794827

ABSTRACT

High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.

14.
Environ Sci Technol ; 58(22): 9770-9781, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781163

ABSTRACT

Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.


Subject(s)
Ferric Compounds , Ferric Compounds/chemistry
15.
Adv Mater ; : e2402979, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811011

ABSTRACT

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

16.
Angew Chem Int Ed Engl ; : e202402841, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647519

ABSTRACT

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

17.
PLoS Pathog ; 20(4): e1012138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640110

ABSTRACT

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.


Subject(s)
MicroRNAs , Phytophthora , RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Phosphorylation , MicroRNAs/metabolism , MicroRNAs/genetics , Phytophthora/pathogenicity , Phytophthora/genetics , Phytophthora/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics
18.
Adv Mater ; : e2401982, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609077

ABSTRACT

Corrosion activities and biofouling pose significant challenges for marine facilities, resulting in substantial economic losses. Inspired by the "brick&mortar" structure of pearls, a novel nanocomposite coating (Pun-HJTx) with long-lasting anticorrosion and intelligent antifouling modes is fabricated by integrating a compatible MoS2/MXene heterostructure as the "brick" into a polyurea-modified PDMS (Pun) acting as "mortar." Notably, the presence of multiple hydrogen bonds within the coating effectively reduces the pinholes resulted from solution volatilizing. In the dark, where fouling adhesion and microbial corrosion activities are weakened, the MoS2/MXene plays a role in contact bactericidal action. Conversely, during daylight when fouling adhesion and microbial corrosion activities intensify, the coating releases reactive oxygen species (such as hydroxyl radicals and superoxide ions) to counteract fouling adhesion. Additionally, the coating exhibits multisource self-healing performance under heated or exposed to light (maximum self-healing rate can reach 99.46%) and proves efficient self-cleaning performance and adhesion strength (>2.0 Mpa), making it highly suitable for various practical marine applications. Furthermore, the outstanding performance of the Pun-HJT1 is maintained for ≈180 days in real-world marine conditions, which proving its practicality and feasibility in real shallow sea environments.

19.
Nat Commun ; 15(1): 3257, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627413

ABSTRACT

Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device's superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion.

20.
J Hazard Mater ; 470: 134223, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593664

ABSTRACT

Elemental carbon (EC) and metals are two important parts of atmospheric black carbon (BC). However, little information is available regarding the interaction between them and its impacts on the reactive oxygen species (ROS) formation and physiological antioxidants depletion. In this study, we chose six most frequently detected metals (Cu(Ⅱ), Fe(Ⅲ), Mn(Ⅱ), Cr(Ⅲ), Pb(Ⅱ) and Zn(Ⅱ)) in BC and examined their interactions with EC in the ROS generation and glutathione (GSH) oxidation. Results showed that only Cu(Ⅱ) and EC synergically promoted the GSH oxidation and hydroxyl radical (•OH) generation. Other five metals had negligible effects on the GSH oxidation regardless of the presence or absence of EC. The synergistic interaction between Cu(Ⅱ) and EC could be attributed to the superior electrical conductivity of EC. In the process, EC transferred electrons from the adjacent GSH to Cu(Ⅱ) through its graphitic carbon framework to yield Cu(Ⅰ) and GSH radical. Cu(Ⅰ) further reacted with dioxygen to generate •OH, which eventually led to the oxidation of GSH. Our results revealed a new driving force inducing the ROS formation and GSH depletion as well as provided novel insights into the risk assessment of BC.

SELECTION OF CITATIONS
SEARCH DETAIL
...