Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Talanta ; 274: 126026, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604039

ABSTRACT

Tracking the variation of Cl- timely within the crevice is of great significance for comprehending the dynamic mechanism of crevice corrosion. The reported chloride ion selective electrodes are difficult to realize the long-time Cl- detection inside the confined crevice, due to their millimeter size or a relative limited lifespan. For this purpose, an Ag/AgCl ultra-micro sensor (UMS) with a radius of 12.5 µm was fabricated and optimized using laser drawing and electrodeposition techniques. Results show the AgCl film's structure is significantly impacted by the deposited current density, and further affects the linear response, life span and stability of Ag/AgCl UMS. The UMS prepared at current density of 0.1 mA/cm2 for 2 h shows a rapid response (several seconds), excellent stability and reproducibility, strong acid/alkali tolerance, sufficient linearity (R2 > 0.99), and long lifespan (86 days). Moreover, combined with the potentiometric mode of scanning electrochemical microscope (SECM), the Ag/AgCl UMS was successfully applied to monitor the in-situ radial Cl- concentration in micro-regions inside a 100 µm gap of stainless steel. The findings demonstrated that there was obvious radial difference in Cl- concentration inside the crevice, where the fastest rise in Cl- concentration was at the opening. The proposed method which combines the UMS with SECM has attractive practical applications for microzone Cl- monitoring in real time inside crevice. It may further promote the study of other localized corrosion mechanism and the development of microzone ions detection method.

2.
Langmuir ; 39(49): 17853-17861, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38031448

ABSTRACT

Titanium and its alloys are protected by a compact and stable passive film, which confers resistance to corrosion by the primary halogen chloride (Cl-) while being less effective against fluoride (F-). Although researchers have recognized different macroscopic corrosion effects of these halide ions on titanium, the underlying mechanisms remain largely unexplored. In this work, the bonding of Cl-/F- with stable passive films was studied in neutral and acidic (pH = 2.3) conditions. The synergistic effect between the interfacial hydrogen bond (HB) structure and halogens on titanium corrosion was first revealed using first-principles calculation and Raman spectroscopy. F- forms more stable halogen-Ti bonds than Cl-, resulting in titanium degradation. The proton combined with F- exhibits a specific synergistic effect, causing corrosion of the passive film. The water hydrogen bond transformation index (HBTI) at the titanium/aqueous interface was 1.88 in an acidic solution containing F-, significantly higher than that in neutral/acid solutions containing Cl- (1.80/1.81) and a neutral solution containing F- (1.81). This work clarifies the structure-activity relationship between HBTI and the destruction of titanium passive films. We propose that the microstructure of the interfacial HB is an undeniable factor in the corrosion of titanium.

3.
R Soc Open Sci ; 10(8): 230636, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650053

ABSTRACT

Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h-1 with four phase shift trials (T1-T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human-load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.

5.
J Colloid Interface Sci ; 643: 551-562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36990868

ABSTRACT

HYPOTHESIS: Unlike noble metals, the oxygen reduction reaction (ORR) behavior on Ti is more complicated due to its spontaneously formed oxide film. This film results in sluggish ORR kinetics and tends to be reduced within ORR potential region, causing the weak and multi-reaction coupled current. Though Ti is being used in chemical and biological fields, its ORR research is still underexplored. EXPERIMENTS: We innovatively employed the modified reactive tip generation-substrate collection (RTG/SC) mode of scanning electrochemical microscopy (SECM) with high efficiency of 97.2 % to quantitatively study the effects of film characteristics, solution environment (pH, anion, dissolved oxygen), and applied potential on the ORR activity and selectivity of Ti. Then, density functional theory (DFT) and molecular dynamics (MD) analyses were employed to elucidate its ORR behavior. FINDINGS: On highly reduced Ti, film properties dominate ORR behavior with promoted 4e- selectivity. Rapid film regeneration in alkaline/O2-saturated conditions inhibits ORR activity. Besides, ORR is sensitive to anion species in neutral solutions while showing enhanced 4e- reduction in alkaline media. All the improved 4e- selectivities originate from the hydrogen bond/electrostatic stabilization effect, while the decayed ORR activity by Cl- arises from the suppressed O2 adsorption. This work provides theoretical support and possible guidance for ORR research on oxide-covered metals.

6.
J Phys Chem B ; 126(44): 9016-9025, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36318969

ABSTRACT

Ion adsorption and hydrogen bond (HB) network reconstruction in electric double layer (EDL) have a profound impact on the interface properties. The microstructure in the bulk phase of 1.00-21.30 wt.% Na2SO3 aqueous solutions are investigated by X-ray scattering, confocal Raman spectroscopy, and classical molecular dynamics. The electronic properties of SO32- adsorption and the geometric structure of the HB network in the EDL at the titanium TiO2(101) surface are studied by density functional theory (DFT) and classical molecular dynamics. The SO32- strongly weakens the fully hydrogen-bonded water (FHW) and transforms it into partial hydrogen-bonded water (PHW). The HB transformation index (HBTI = PHW/FHW) shows a linear relationship with the mass fraction of Na2SO3. The TiOb-parallel adsorption configuration of SO32- enhances the ionicity of the Ob-Ti6 bond, resulting in the formation of oxygen vacancies at the titanium passive film surface. Besides, SO32- and Na+ are enriched and thermodynamic supersaturated in the inner Helmholtz layer (IHL), and the ions are diluted in the outer Helmholtz layer (OHL). The diffusion coefficient of SO32- and water molecules in EDL decreases seriously, which is easy to causes salt scaling on the surface of titanium passive film. This work provides evidence for the destruction of titanium passive film by SO32-.

7.
Sci China Technol Sci ; 65(9): 2051-2067, 2022.
Article in English | MEDLINE | ID: mdl-36032505

ABSTRACT

The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.

8.
Langmuir ; 38(3): 1057-1066, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35015544

ABSTRACT

The hydrogen bond network reconstruction at the titanium/water interface was monitored by Raman spectroscopy. In addition, the adsorption properties and the surface electron properties of hydrogen bond cluster (HBC) configurations were analyzed using adsorption energy, work function, Mulliken charge population, and density of states (DOS) by the first-principles method based on density functional theory (DFT). Our results show that the hydrogen bond network of the aqueous solution is reconstructed under the interaction with the anatase TiO2(101) surface with the transformation of the chain and free hydrogen bonds to complex hydrogen bonds. The adsorption energy of a single water molecule and HBC on the anatase TiO2(101) surface are the lowest with the 1-DD-h (-0.851 eV) and 3-D-h-DDA (-1.048 eV) configurations, respectively. Over the long term, artificially regulating the structure of the HBC might be an effective and general way to slow down the metal anodic reaction without surface modification. Furthermore, the surface charge concentrates on the bridging oxygen atom, which will be the active site of the interface reaction. It is helpful to clarify the anodic corrosion reaction mechanism of the titanium spontaneous oxide film/water interface.

9.
Chem Commun (Camb) ; 57(49): 6074-6077, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34036999

ABSTRACT

A water-soluble cage containing three naphthalenediimide (NDI) units was synthesized in a one-pot manner without chromatographic purification, during which six irreversible C-N bonds formed simultaneously via an SN2 reaction. The cage was observed to be capable of accommodating a variety π-electron rich guests in a peripheral manner in water. However, for linear guests including I3- and I2, the cage is able to form an inclusion complex. Besides, in the solid state, the cage can absorb vapor of I2.

10.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 1994-2004, 2020 09.
Article in English | MEDLINE | ID: mdl-32746327

ABSTRACT

Loaded walking with a rucksack results in both gravitational and inertial forces of the load that must be borne by human carriers. The inertial force may be the source of metabolic burden and musculoskeletal injuries. This paper presents a lightweight backpack with a disturbance observer-based acceleration control to minimize the inertial force. The backpack was evaluated by seven participants walking on a treadmill at 5 km h-1 with a 19.4 kg load. Three experimental conditions were involved, including walking with a locked load (LOCKED), with an acceleration-controlled load (ACTIVE) using the designed backpack and walking with the same load using a rucksack (RUCKSACK). Our results showed that the ACTIVE condition reduces the load acceleration by 98.5% on average, and reduce the gross metabolic power by 8.0% and 11.0% as compared to LOCKED and RUCKSACK conditions respectively. The results demonstrate that the proposed active backpack can improve the loaded walking economy compared with a conventional rucksack in level-ground walking.


Subject(s)
Acceleration , Walking , Biomechanical Phenomena , Humans , Weight-Bearing
11.
Chem Sci ; 11(22): 5790-5796, 2020 May 19.
Article in English | MEDLINE | ID: mdl-34094081

ABSTRACT

Combined computational and experimental studies elucidated the distinctive mechanistic features of electrochemical cobalt-catalyzed C-H oxygenation. A sequential electrochemical-chemical (EC) process was identified for the formation of an amidylcobalt(iii) intermediate. The synthesis, characterization, cyclic voltammetry studies, and stoichiometric reactions of the related amidylcobalt(iii) intermediate suggested that a second on-cycle electro-oxidation occurs on the amidylcobalt(iii) species, which leads to a formal Co(iv) intermediate. This amidylcobalt(iv) intermediate is essentially a cobalt(iii) complex with one additional single electron distributed on the coordinating heteroatoms. The radical nature of the coordinating pivalate allows the formal Co(iv) intermediate to undergo a novel carboxylate-assisted HAT mechanism to cleave the arene C-H bond, and a CMD mechanism could be excluded for a Co(iii/i) catalytic scenario. The mechanistic understanding of electrochemical cobalt-catalyzed C-H bond activation highlights the multi-tasking electro-oxidation and the underexplored reaction channels in electrochemical transition metal catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...