Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
J Biophotonics ; : e202400137, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894526

ABSTRACT

Label-free biological cell imaging relies on rapid multimode phase imaging of biological samples in natural settings. To improve image contrast, phase is encoded into intensity information using the differential interference contrast (DIC) and Zernike phase contrast (ZPC) techniques. To enable multimode contrast-enhanced observation of unstained specimens, this paper proposes an improved multimode phase imaging method based on the transport of intensity equation (TIE), which combines conventional microscopy with computational imaging. The ZPC imaging module based on adaptive aperture adjustment is applied when the quantitative phase results of biological samples have been obtained by solving the TIE. Simultaneously, a rotationally symmetric shear-based technique is used that can yield isotropic DIC. In this paper, we describe numerical simulation and optical experiments carried out to validate the accuracy and viability of this technology. The calculated Michelson contrast of the ZPC image in the resolution plate experiment increased from 0.196 to 0.394.

3.
Eur J Med Res ; 29(1): 298, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802976

ABSTRACT

Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-ß1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-ß1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.


Subject(s)
Contracture , Hypoxia-Inducible Factor 1, alpha Subunit , Knee Joint , Pyroptosis , Rats, Sprague-Dawley , Animals , Contracture/metabolism , Contracture/physiopathology , Contracture/pathology , Pyroptosis/physiology , Rats , Male , Knee Joint/pathology , Knee Joint/metabolism , Knee Joint/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Disease Models, Animal , Transforming Growth Factor beta1/metabolism , Joint Capsule/metabolism , Joint Capsule/pathology , Joint Capsule/physiopathology , Range of Motion, Articular , Smad3 Protein/metabolism
4.
J Hazard Mater ; 469: 133997, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38508115

ABSTRACT

Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.


Subject(s)
Fibronectins , Osteoporosis , Humans , Mice , Female , Animals , Pregnancy , Prednisone/metabolism , Fibronectins/metabolism , Maternal Exposure , Mitophagy , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , Osteoporosis/chemically induced
5.
J Orthop Surg Res ; 18(1): 930, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057890

ABSTRACT

Joint capsule fibrosis, a common complication of joint immobilization, is mainly characterized by abnormal collagen deposition. The present study aimed to investigate the effect of extracorporeal shock wave therapy (ESWT) on reduced collagen deposition in the joint capsule during immobilization-induced joint capsule fibrosis. Additionally, the potential involvement of the adenosine A2A receptor (A2AR)-Neurotrophic factor e2-related factor 2 (Nrf2)/Haem oxygenase-1 (HO-1) pathway was explored. Thirty 3-month-old male Sprague-Dawley rats were randomly assigned to five groups: control (C), immobilization model (IM), natural recovery (NR), ESWT intervention (EI), and ESWT combined with A2AR antagonist SCH 58261 intervention (CI). After the left knee joints of rats in the IM, NR, EI and CI groups were immobilized using a full-extension fixation brace for 4 weeks, the EI and CI groups received ESWT twice a week for 4 weeks. The CI group was also treated with ESWT following intraperitoneal injection of SCH 58261 (0.01 mg/kg) for 4 weeks. The range of motion of the left knee joint was measured, and the protein levels of collagens I and III, A2AR, phosphorylated-protein kinase A/protein kinase A (p-PKA/PKA), p-Nrf2/Nrf2, and HO-1 were analysed by Western blotting. The IM and NR groups showed significantly greater arthrogenic contracture than the C group (P < 0.05). Compared to the NR group, the EI and CI groups exhibited significant improvement in arthrogenic contracture (P < 0.05). Conversely, the EI group showed lower contracture than the CI group (P < 0.05). Similar results were observed for collagen deposition and the protein levels of collagens I and III. The intervention groups (EI and CI groups) showed higher levels of p-Nrf2/Nrf2 and HO-1 than the NR group (P < 0.05). Moreover, the EI group exhibited higher levels of p-PKA/PKA, p-Nrf2/Nrf2, and HO-1 than the CI group (P < 0.05). However, no significant difference was found in the A2AR levels among the five groups (P > 0.05). ESWT may activate A2AR, leading to the phosphorylation of PKA. Subsequently, Nrf2 may be activated, resulting in the upregulation of HO-1, which then reduces collagen deposition and alleviates immobilization-induced joint capsule fibrosis.


Subject(s)
Contracture , NF-E2-Related Factor 2 , Rats , Male , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Immobilization , Rats, Sprague-Dawley , Knee Joint/pathology , Joint Capsule/metabolism , Contracture/etiology , Contracture/therapy , Contracture/metabolism , Collagen Type I/metabolism , Collagen/metabolism , Range of Motion, Articular , Fibrosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology
6.
Appl Opt ; 62(14): 3606-3615, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37706976

ABSTRACT

Fourier ptychographic microscopy (FPM) combines the concepts of phase retrieval algorithms and synthetic apertures and can solve the problem in which it is difficult to combine a large field of view with high resolution. However, the use of the coherent transfer function in conventional calculations to describe the linear transfer process of an imaging system can lead to ringing artifacts. In addition, the Gerchberg-Saxton iterative algorithm can cause the phase retrieval part of the FPM algorithm to fall into a local optimum. In this paper, Gaussian apodization coherent transfer function is proposed to describe the imaging process and is combined with an iterative method based on amplitude weighting and phase gradient descent to reduce the presence of ringing artifacts while ensuring the accuracy of the reconstructed results. In simulated experiments, the proposed algorithm is shown to give a smaller mean square error and higher structural similarity, both in the presence and absence of noise. Finally, the proposed algorithm is validated in terms of giving reconstruction results with high accuracy and high resolution, using images acquired with a new microscope system and open-source images.

7.
World J Orthop ; 14(9): 669-681, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37744718

ABSTRACT

BACKGROUND: Current research lacks a model of knee extension contracture in rats. AIM: To elucidate the formation process of knee extension contracture. METHODS: We developed a rat model using an aluminum external fixator. Sixty male Sprague-Dawley rats with mature bones were divided into the control group (n = 6) and groups that had the left knee immobilized with an aluminum external fixator for 1, 2, and 3 d, and 1, 2, 3, 4, 6, and 8 wk (n = 6 in each group). The passive extension range of motion, histology, and expression of fibrosis-related proteins were compared between the control group and the immobilization groups. RESULTS: Myogenic contracture progressed very quickly during the initial 2 wk of immobilization. After 2 wk, the contracture gradually changed from myogenic to arthrogenic. The arthrogenic contracture progressed slowly during the 1st week, rapidly progressed until the 3rd week, and then showed a steady progression until the 4rd week. Histological analyses confirmed that the anterior joint capsule of the extended fixed knee became increasingly thicker over time. Correspondingly, the level of transforming growth factor beta 1 (TGF-ß1) and phosphorylated mothers against decapentaplegic homolog 2 (p-Smad2) in the anterior joint capsule also increased with the immobilization time. Over time, the cross-sectional area of muscle fibers gradually decreased, while the amount of intermuscular collagen and TGF-ß1, p-Smad2, and p-Smad3 was increased. Unexpectedly, the amount of intermuscular collagen and TGF-ß1, p-Smad2, and p-Smad3 was decreased during the late stage of immobilization (6-8 wk). The myogenic contracture was stabilized after 2 wk of immobilization, whereas the arthrogenic contracture was stabilized after 3 wk of immobilization and completely stable in 4 wk. CONCLUSION: This rat model may be a useful tool to study the etiology of joint contracture and establish therapeutic approaches.

8.
Am J Phys Med Rehabil ; 102(8): 692-700, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36630294

ABSTRACT

OBJECTIVES: The aims of the study are to investigate the effect of electrical stimulation on disuse muscular atrophy induced by immobilization (IM) and to explore the role of PERK signal and Parkin-dependent mitophagy in this process. DESIGN: In the first subexperiment, 24 rabbits were divided into four groups, which underwent different periods of IM. In the second subexperiment, 24 rabbits were divided into four groups on average in accordance with different kinds of interventions. To test the time-dependent changes of rectus femoris after IM, and to evaluate the effect of electrical stimulation, the wet weights, cross-sectional area and fat deposition of rectus femoris were assessed in this study, along with the protein levels of atrogin-1, p-PERK, Parkin, and COXIV. RESULTS: The wet weights and cross-sectional area decreased, and the fat deposition increased in rectus femoris after IM, along with the elevated protein levels of atrogin-1, p-PERK, Parkin, and decreased protein levels of COXIV. The above histomorphological and molecular changes can be partially ameliorated by electrical stimulation. CONCLUSIONS: Immobilization of unilateral lower limb could induce rectus femoris atrophy, which can be partially rectified by electrical stimulation. PERK signal and Parkin-mediated mitophagy may be the mechanisms by which electrical stimulation can play a significant role.


Subject(s)
Mitophagy , Muscular Atrophy , Animals , Rabbits , Muscular Atrophy/etiology , Up-Regulation , Ubiquitin-Protein Ligases/metabolism , Quadriceps Muscle/pathology
9.
Biomol Biomed ; 23(2): 277-286, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36226595

ABSTRACT

The study aimed to observe the therapeutic effect of static progressive stretching (SPS) combined with extracorporeal shock wave therapy (ESWT) on extension knee joint contracture in rats and the effect on the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway in the development of joint capsule fibrosis. Thirty-six Sprague Dawley rats were randomly divided into blank control group, immobilization model group, natural recovery group, ESWT intervention group, SPS intervention group, and SPS combined with ESWT intervention group. The left knee joints of the rats, except for the control group, were fixed with an external fixation brace for four weeks at full extension to form joint contractures. The therapeutic effect of each intervention was assessed by evaluating total and arthrogenic contracture, the number of total cells and collagen deposition in the anterior joint capsule, the protein levels of TGF-ß1, FGF-2, and ERK2 in the anterior joint capsule, the mean optical density of upstream RAS and downstream ERK2 positive expression in the MAPK/ERK pathway. SPS in combination with ESWT was more effective in relieving joint contracture, improving the histopathological changes in the anterior joint capsule, and suppressing the high expression of target proteins and the overactivated MAPK/ERK pathway. The overactivated MAPK/ERK pathway was involved in the formation of extension knee joint contracture in rats. SPS in combination with ESWT was effective in relieving joint contracture and fibrosis of joint capsule. Moreover, the inhibition of the overactivated MAPK/ERK pathway may be the potential molecular mechanism for its therapeutic effect.


Subject(s)
Contracture , Extracorporeal Shockwave Therapy , Rats , Animals , Rats, Sprague-Dawley , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Range of Motion, Articular , Contracture/therapy , Knee Joint/metabolism , Fibrosis
10.
BMC Musculoskelet Disord ; 23(1): 398, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484550

ABSTRACT

BACKGROUND: The study aimed to investigate the effect of low-frequency electrical stimulation (LFES) on disuse muscle atrophy and its mechanism in a rabbit model of knee extension contracture. METHODS: This study involved two experiments. In the time-point experiment, 24 rabbits were randomly divided into 4 groups: Control 1 (Ctrl1 group), immobilization for 2 weeks (I-2 group), immobilization for 4 weeks (I-4 group), and immobilization for 6 weeks (I-6 group). In the intervention experiment, 24 rabbits were randomly divided into 4 groups: Control 2 (Ctrl2 group), electrical stimulation (ESG group), natural recovery (NRG group), and electrical stimulation treatment (ESTG group). All intervention effects were assessed by evaluating the knee joint range of motion (ROM), cross-sectional area (CSA) of the rectus femoris muscle, and expression of autophagy-related proteins. RESULTS: The time-point experiment showed that immobilization reduced the knee ROM, reduced the rectus femoris muscle CSA, and activated autophagy in skeletal muscle. The levels of five autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), autophagy-related protein 7 (Atg7), p62, and microtubule-associated protein light chain 3B-II (LC3B-II)] were significantly elevated in the skeletal muscle of the I-4 group. The intervention experiment further showed that LFES significantly improved the immobilization-induced reductions in ROM and CSA. Additionally, LFES resulted in a significant decrease in the protein expression of mTOR, p-mTOR, Atg7, p62, and LC3B-II in the rectus femoris muscle. CONCLUSIONS: LFES alleviates immobilization-evoked disuse muscle atrophy possibly by inhibiting autophagy in the skeletal muscle of rabbits.


Subject(s)
Contracture , Muscular Atrophy , Animals , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Electric Stimulation , Humans , Mammals , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/therapy , Rabbits , TOR Serine-Threonine Kinases/metabolism
11.
Zhongguo Gu Shang ; 35(4): 374-8, 2022 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-35485157

ABSTRACT

As an important exercise and energy metabolism organ of the human body, the normal maintenance of skeletal muscle mass is essential for the body to perform normal physiological functions. The autophagy-lysosome (AL) pathway is a physiological or pathological mechanism that is ubiquitous in normal and diseased cells. It plays a key role in the maintaining of protein balance, removing damaged organelles, and the stability of internal environment. The smooth progress of the autophagy process needs to go through multiple steps, which are completed under the coordinated action of multiple factors. Autophagy maintains the muscle homeostasis of a healthy body by removing cell components such as damaged myofibrils and isolated cytoplasmic proteins. Autophagy could also provide the initial energy required for cell proliferation, promote muscle regeneration and remodeling after injury. At the same time, autophagy disorder is also an important cause of age-related skeletal muscle atrophy. Autophagy could affect the response of skeletal muscle to exercise, and increasing the level of basic autophagy is beneficial to improve the adaptive response of skeletal muscle to exercise. This article summarizes the role and pathways of autophagy in the maintenance of skeletal muscle quality, in order to provide effective rehabilitation strategies for clinical prevention and treatment of muscle atrophy.


Subject(s)
Muscle, Skeletal , Signal Transduction , Autophagy/physiology , Exercise/physiology , Humans , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology
12.
Sci Prog ; 104(4): 368504211054992, 2021 10.
Article in English | MEDLINE | ID: mdl-34825614

ABSTRACT

The purpose of this study was to determine the preventive effect of ultrashort wave diathermy on immobilization-induced myogenic contracture and to explore its underlying mechanisms. Forty-two rabbits were randomly assigned into control (Group C), immobilization (Group I, which was further divided into one week, Group I-1; two weeks, Group I-2; and four weeks, Group I-4, subgroups by the length of immobilization) and ultrashort wave prevention (Group U, which was further divided into one week, Group U-1; two weeks, Group U-2; and four weeks, Group U-4, by time of treatment) groups. Intervention effects were assessed by evaluating rectus femoris cross-sectional area (CSA), knee range of motion, and the protein levels for myogenic differentiation (MyoD) and muscle atrophy F-box (MAFbx-1) in the rectus femoris. Compared with those of Group C, in Groups I and U, total contracture, myogenic contracture, MyoD and MAFbx-1 levels were significantly elevated, and CSA was significantly smaller (p < 0.05). Compared with those of Group I at each time point, MyoD levels were significantly elevated, MAFbx-1 levels were significantly lower, CSA was significantly larger, and myogenic contracture was significantly alleviated in Group U (p < 0.05). In the early stages of contracture, ultrashort wave diathermy reduces muscle atrophy and delays the process of myogenic contracture during joint immobilization; the mechanism of this may be explained as increased expression of MyoD triggered by suppression of the MAFbx-1-mediated ubiquitin-proteasome pathway.


Subject(s)
Contracture , Diathermy , Animals , Rabbits , Contracture/pathology , Contracture/prevention & control , Knee Joint , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/therapy , Range of Motion, Articular
13.
Am J Phys Med Rehabil ; 100(7): 643-650, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32969968

ABSTRACT

OBJECTIVE: The purpose of this study was to examine the intervention effect of radial extracorporeal shock wave combined with ultrashort wave diathermy on immobilization-induced fibrosis and contracture of muscle. DESIGN: The groups included male rabbits for the group (control group). To cause joint contracture, rabbits underwent plaster fixation of a left knee joint at full extension. After immobilization for 4 wks, all rabbits were randomly divided into five groups: model group, natural recovery group, radial extracorporeal shock wave treatment group, ultrashort wave diathermy group, and radial extracorporeal shock wave combined with ultrashort wave diathermy group. All intervention effects were assessed by evaluating the cross-sectional area and the collagen deposition of muscle, the knee joint range of motion and the protein levels for transforming growth factor ß1 and hypoxia-inducible factor 1α. RESULTS: The combined treatment group got the best recovery of the knee joint function. The combined treatment was more effective than radial extracorporeal shock wave or ultrashort wave diathermy alone against the fibrosis and contracture of muscle, as well as the overexpression of transforming growth factor ß1 and hypoxia-inducible factor 1α. CONCLUSIONS: Radial extracorporeal shock wave combined with ultrashort wave diathermy was effective in alleviating immobilization-induced contracture and fibrosis of muscle, as well as reducing the molecular manifestations of muscle fibrosis.


Subject(s)
Contracture/therapy , Diathermy/methods , Extracorporeal Shockwave Therapy/methods , Fibrosis/therapy , Muscular Diseases/therapy , Animals , Combined Modality Therapy , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immobilization/adverse effects , Knee Joint , Male , Quadriceps Muscle , Rabbits , Range of Motion, Articular , Transforming Growth Factor beta1/metabolism
14.
Chin J Traumatol ; 22(2): 93-98, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30928194

ABSTRACT

The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca2+-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-ß1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.


Subject(s)
Contracture/etiology , Immobilization/adverse effects , Joints , Muscle, Skeletal , Signal Transduction/physiology , Atrophy , Autophagy , Calcium/metabolism , Caspases/metabolism , Connective Tissue/metabolism , Connective Tissue/pathology , Contracture/metabolism , Contracture/pathology , Contracture/therapy , Fibrosis , Humans , Lysosomes/metabolism , Matrix Metalloproteinases/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Transforming Growth Factor beta1/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...