Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(4): 4682-4688, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32186852

ABSTRACT

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral "29" copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the "29" oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a "29" oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately "miscut" metal surface.

2.
J Chem Phys ; 152(5): 054715, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32035467

ABSTRACT

Catalytic transformation of methane (CH4) into methanol in a single step is a challenging issue for the utilization of CH4. We present a direct method for converting CH4 into methanol with high selectivity over a Pt/CeO2 catalyst which contains ionic Pt2+ species supported on a CeO2 nanoparticle. The Pt/CeO2 catalyst reproducibly yielded 6.27 mmol/g of Pt with a selectivity of over 95% at 300 °C when CH4 and CO are used as reactants, while the catalyst had a lower activity when using only CH4 without CO. Active lattice oxygen created on the Pt and CeO2 interface provides selective reaction pathways for the conversion of CH4 to methanol. Based on high-angle annular dark-field scanning transmission electron microscopy, x-ray photoelectron spectroscopy, x-ray absorption near-edge structure, extended x-ray absorption fine structure, catalytic studies, and density functional theory calculations, we propose a mechanistic pathway involving CH4 activation at the active site in the vicinity of Pt2+ species.

3.
J Phys Chem Lett ; 9(11): 3035-3042, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29665684

ABSTRACT

Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu+ cation with a linear configuration and a Cu2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu+ cation is bonded to H2O or NH3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH3_4_Z2Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu+ cation and Cu2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

4.
J Chem Phys ; 147(22): 224706, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29246067

ABSTRACT

The geometric and electronic structural characterization of thin film metal oxides is of fundamental importance to many fields such as catalysis, photovoltaics, and electrochemistry. Surface defects are also well known to impact a material's performance in any such applications. Here, we focus on the "29" oxide Cu2O/Cu(111) surface and we observe two common structural defects which we characterize using scanning tunneling microscopy/spectroscopy and density functional theory. The defects are proposed to be O vacancies and Cu adatoms, which both show unique topographic and spectroscopic signatures. The spatially resolved electronic and charge state effects of the defects are investigated, and implications for their reactivity are given.

5.
Phys Chem Chem Phys ; 16(6): 2399-410, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24352204

ABSTRACT

To provide a basis for understanding the reactive processes on nickel surfaces at fuel cell anodes, we investigate the influence of an external electric field on the dehydrogenation of methyl species on a Ni(111) surface using density functional theory calculations. The structures, adsorption energies and reaction barriers for all methyl species dissociation on the Ni(111) surface are identified. Our results show that the presence of an external electric field does not affect the structures and favorable adsorption sites of the adsorbed species, but causes the adsorption energies of the CHx species at the stable site to fluctuate around 0.2 eV. Calculations give an energy barrier of 0.692 eV for CH3* → CH2* + H*, 0.323 eV for CH2* → CH* + H* and 1.373 eV for CH* → C* + H*. Finally, we conclude that the presence of a large positive electric field significantly increases the energy barrier of the CH* → C* + H* reaction more than the other two reactions, suggesting that the presence of pure C atoms on Ni(111) are impeded in the presence of an external positive electric field.

6.
Phys Chem Chem Phys ; 15(47): 20662-71, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24189500

ABSTRACT

We systematically investigate the adsorption of benzene on Pt(111), Pt(355) and Pt(322) surfaces by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principle calculations based on density functional theory (DFT), including van der Waals corrections. By comparing the adsorption energies at 1/9, 1/16 and 1/25 ML on Pt(111), we find significant lateral interactions exist between the benzene molecules at 1/9 ML. The adsorption behavior on Pt(355) and Pt(322) is very different. While on Pt(355) a step species is clearly identified in the C 1s spectra at low coverages followed by occupation of a terrace species at high coverages, no evidence for a step species is found on Pt(322). These different adsorption sites are confirmed by extensive DFT calculations, where the most favorable adsorption configurations on Pt(355) and Pt(322) are also found to vary: a highly distorted across the step molecule is found on Pt(355) while a less distorted configuration adjacent to the step molecule is deduced for Pt(322). The theoretically proposed C 1s core level binding energy shifts between these most favorable configurations and the terrace species are found to correlate well with experiment: for Pt(355), two adsorbate states are found, separated by ~0.4 eV in XPS and 0.3 eV in the calculations, in contrast to only one state on Pt(322).

7.
Phys Chem Chem Phys ; 14(48): 16552-7, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-22772941

ABSTRACT

As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.

8.
Phys Chem Chem Phys ; 14(7): 2462-7, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22249386

ABSTRACT

As a first step towards a microscopic understanding of supported ultrathin nanofilms of TiN, we present state-of-the-art density-functional theory (DFT) calculations to investigate the interfacial properties of the TiN/MgO system as a function of film thickness. Optimized atomic geometries, energetics, and analysis of the electronic structure of the TiN/MgO systems are reported. In particular, we find that the work function of 1 ML of TiN(100) on MgO(100) exhibits a significant decrease, rationalized by the large surface dipole moment formation due to the changes in charge densities at the interface of this system. This decrease in the work function of TiN/MgO systems (as compared to pristine MgO(100) surface) could well benefit their application in metal-oxide-semiconductor devices as an ideal gate-stack material.


Subject(s)
Magnesium Oxide/chemistry , Nanostructures/chemistry , Titanium/chemistry , Models, Chemical , Semiconductors
9.
Chemphyschem ; 10(18): 3295-302, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19904796

ABSTRACT

Adsorption ability and reaction rate are two essential parameters that define the efficiency of a catalyst. Herein, we implement density functional theory (DFT) and report that CO can be oxidized by a pyramidal Cu cluster with an associated reaction barrier E(b)=1.317 eV. In this case, our transition state calculations reveal that the barrier can be significantly lowered after superimposing a negative electric field. Moreover, when the field intensity corresponds to F=-0.010 au, the magnitude of E(b)=0.698 eV is equivalent to-or lower than-those of typical catalysts such as Pt, Rh, and Pd. The superimposition of a positive field is found to enhance the release of the nascent CO(2) molecule. Our study demonstrates that small Cu clusters have better adsorption ability than the corresponding flat surface while the field can be used to enhance the purification of the exhaust gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...