Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sensors (Basel) ; 23(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177618

ABSTRACT

It is important to detect and classify foreign fibers in cotton, especially white and transparent foreign fibers, to produce subsequent yarn and textile quality. There are some problems in the actual cotton foreign fiber removing process, such as some foreign fibers missing inspection, low recognition accuracy of small foreign fibers, and low detection speed. A polarization imaging device of cotton foreign fiber was constructed based on the difference in optical properties and polarization characteristics between cotton fibers. An object detection and classification algorithm based on an improved YOLOv5 was proposed to achieve small foreign fiber recognition and classification. The methods were as follows: (1) The lightweight network Shufflenetv2 with the Hard-Swish activation function was used as the backbone feature extraction network to improve the detection speed and reduce the model volume. (2) The PANet network connection of YOLOv5 was modified to obtain a fine-grained feature map to improve the detection accuracy for small targets. (3) A CA attention module was added to the YOLOv5 network to increase the weight of the useful features while suppressing the weight of invalid features to improve the detection accuracy of foreign fiber targets. Moreover, we conducted ablation experiments on the improved strategy. The model volume, mAP@0.5, mAP@0.5:0.95, and FPS of the improved YOLOv5 were up to 0.75 MB, 96.9%, 59.9%, and 385 f/s, respectively, compared to YOLOv5, and the improved YOLOv5 increased by 1.03%, 7.13%, and 126.47%, respectively, which proves that the method can be applied to the vision system of an actual production line for cotton foreign fiber detection.

2.
Huan Jing Ke Xue ; 41(8): 3740-3747, 2020 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-33124349

ABSTRACT

A laboratory-scale anaerobic membrane bioreactor (AnMBR) was used for the co-digestion of sewage sludge and food waste to investigate its organic matter removal characteristics, biogas production performance, and microbial community composition. The results showed that the degradation rate of volatile solids (VS) increased from 17.5% for a single digestion to 40% for the total digestion, and that the COD removal was 95.3% when the organic loading rate (OLR) was stabilized at 0.59-0.64 kg·(m3·d)-1. The solids content of the digested sludge increased by a factor of 3.9. The final CH4 content was 60% and the CH4 yield was 78.7 mL·g-1 of CODadded. The transmembrane pressure (TMP) and average flux were maintained at between -3.1 and -2.7 kPa and 0.106 L·(m2·h)-1, respectively, and membrane fouling was not serious. According to an analysis of the microbial diversity using 16S rRNA, the anaerobic bacterium in the AnMBR were mainly phylum Proteobacteria, Bacteroidetes, and Cloacimonetes, and the dominant methanogens included the Methanobacterium family, Methanosaeta genus, and Methanolinea genus. This study provides a strong theoretical basis for research into the stability and performance of AnMBRs for the co-treatment of sludge and other high-solid waste streams, and provided an effective solution for biomass resource utilization and the energy crisis.


Subject(s)
Refuse Disposal , Sewage , Anaerobiosis , Base Composition , Bioreactors , Food , Methane , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Waste Disposal, Fluid
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(5): 1345-9, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22827086

ABSTRACT

The polarization-sensitive characteristics in the transmission spectra of TiO2/SiO2 optical multilayer films of one-dimensional photonic crystal (1D PC) with nematic liquid crystal defects were investigated in the present paper. The transmission spectra measurements and simulated results show that the polarization-sensitive feature was obvious when natural light was normal incident onto the parallelly aligned nematic liquid crystal. There were peaks of the extraordinary light (TE mode) with center wavelengths 1831 and 1800 nm and the ordinary light (TM mode) with center wavelengths 1452 and 1418 nm in the photonic forbidden band, respectively. With applied voltage increasing, the peaks of the extraordinary light was blue-shifted, and coincided with the peaks of O light gradually. Their tunable ranges were about 31 and 34 nm, respectively. For the random nematic liquid crystal, polarization sensitivity was not observed. Meanwhile, an individual extraordinary light peak with center wavelength 1801 nm and an individual ordinary light peak with center wavelength 1391 nm were obtained in the photonic forbidden band, respectively. The peaks were also found blue-shifted with applied voltage increasing, and their tunable ranges were about 64 and 15 nm, respectively. The polarization insensitive photonic crystal with nematic liquid crystal defects can be achieved by random liquid crystal molecules, which make the effective refractive index of the extraordinary light equal to that of the ordinary light.

SELECTION OF CITATIONS
SEARCH DETAIL
...