Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Front Pharmacol ; 15: 1348019, 2024.
Article in English | MEDLINE | ID: mdl-38389919

ABSTRACT

Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.

2.
Am J Transl Res ; 15(6): 4291-4313, 2023.
Article in English | MEDLINE | ID: mdl-37434823

ABSTRACT

OBJECTIVES: To explore the key genes involved in the occurrence and development of glioblastoma (GBM) by analyzing whole-transcriptome sequencing and biologic data from GBM and normal cerebral cortex tissues and to search for important noncoding RNA (ncRNA) molecular markers based on the competitive endogenous RNA (ceRNA) network. METHODS: Ten GBM and normal cerebral cortex tissues were collected for full transcriptome sequencing, screened for differentially expressed (DE) mRNAs, miRNAs, lncRNAs, and circRNAs, and subjected to bioinformatic analysis. We constructed a Protein-Protein Interaction (PPI) network and a circRNA/lncRNA-miRNA-mRNA regulatory network and identified them using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Finally, The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were used to validate and conduct a survival analysis of the target genes. RESULTS: A total of 5341 DEmRNAs, 259 DEmiRNAs, 3122 DElncRNAs, and 2135 DEcircRNAs were identified. Enrichment analysis showed that target genes regulated by DEmiRNA, DElncRNA, and DEcircRNA were closely related to chemical synaptic transmission and ion transmembrane transport. A PPI network analysis screened 10 hub genes that directly participate in tumor cell mitosis regulation. In addition, the ceRNA composite network showed that hsa-miR-296-5p and hsa-miR-874-5p were the central nodes of the network, and the reliability of relevant key molecules was successfully verified through RT-qPCR identification and the TCGA database. The CGGA database survival analysis produced 8 DEmRNAs closely related to GBM patient survival prognosis. CONCLUSIONS: This study revealed the important regulatory functions and molecular mechanisms of ncRNA molecules and identified hsa-miR-296-5p and hsa-miR-874-5p as key molecules in the ceRNA network. They may play an important role in GBM pathogenesis, treatment, and prognosis.

3.
Phytomedicine ; 104: 154331, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35878553

ABSTRACT

BACKGROUND: Cisplatin-induced cardiotoxicity severely limits its clinical application as an antitumor drug and increases the risk of cardiovascular disease. Icariin (ICA), the main flavonoid isolated from Epimedii Folium, has been demonstrated to have various beneficial effects on cardiovascular disease. However, the protective effect of ICA against cisplatin-induced cardiotoxicity remains unclear. PURPOSE: In present study, we explored the protective action of ICA against cisplatin-induced cardiotoxicity and its possible molecular mechanisms in vitro and in vivo. METHODS: Mice were intraperitoneally injected with cisplatin 4 mg/kg every other day for 7 times to establish myocardial injury model. ICA (15, 30 mg/kg) was administered to mice by gavage for 21 days. H9c2 cells were treated with ICA (3, 6, 12 µM) in the presence or absence of cisplatin (40 µM), and then cell viability, oxidative stress, apoptosis, and mitochondrial function were evaluated. RESULTS: Biochemical index detection and histopathological staining analysis showed that ICA had a good protective effect on cisplatin-induced cardiotoxicity. Cellular experiments showed that ICA inhibited cisplatin-induced oxidative stress in a dose-dependent manner by regulating the levels of glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA). ICA could inhibit the expression of NF-κB and the secretion of inflammatory factors, thereby alleviating the inflammatory injury caused by cisplatin. In addition, ICA could alleviate cisplatin-induced myocardial injury by activating SIRT1 and PI3K/Akt signaling pathways and inhibiting MAPKs signaling pathway. CONCLUSION: These results suggest that ICA could attenuate cisplatin-induced cardiac injury by inhibiting oxidative stress, inflammation and apoptosis, laying a foundation for ICA to reduce chemotherapy-induced cardiotoxicity in clinical practice.


Subject(s)
Cardiovascular Diseases , Cisplatin , Animals , Apoptosis , Cardiotoxicity/etiology , Cisplatin/toxicity , Flavonoids , Mice , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism
4.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480577

ABSTRACT

BACKGROUND: Although kidney injury caused by cisplatin has attracted much attention, cisplatin-induced cardiotoxicity is elusive. Our previous studies have confirmed that saponins (ginsenosides) from Panax quinquefolius can effectively reduce acute renal injuries. Our current study aimed to identify the potential effects of saponins from leaves of P. quinquefolius (PQS) on cisplatin-evoked cardiotoxicity. METHODS: Mice were intragastrically with PQS at the doses of 125 and 250 mg/kg daily for 15 days. The mice in cisplatin group and PQS + cisplatin groups received four times intraperitoneal injections of cisplatin (3 mg/kg) two days at a time from the 7th day, respectively. All mice were killed at 48 h following final cisplatin injection. Body weights, blood and organic samples were collected immediately. RESULTS: Our results showed that cisplatin-challenged mice experienced a remarkable cardiac damage with obvious histopathological changes and elevation of lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT) concentrations and viabilities in serum. Cisplatin also impaired antioxidative defense system in heart tissues manifested by a remarkable reduction in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity, demonstrating the overproduction of reactive oxygen species (ROS) and oxidative stress. Interestingly, PQS (125 and 250 mg/kg) can attenuate cisplatin-evoked changes in the above-mentioned parameters. Additionally, PQS administration significantly alleviated the oxidation resulted from inflammatory responses and apoptosis in cardiac tissues via inhibition of overexpressions of TNF-α, IL-1ß, Bax, and Bad as well as the caspase family members like caspase-3, and 8, respectively. CONCLUSION: Findings from our present research clearly indicated that PQS exerted significant effects on cisplatin-induced cardiotoxicity in part by inhibition of the NF-κB activity and regulation of PI3K/Akt/apoptosis mediated signaling pathways.

5.
Huan Jing Ke Xue ; 37(8): 3001-3006, 2016 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29964725

ABSTRACT

To study the transfer and fate of perfluorooctane sulfonate (PFOS) in Shenzhen region, a level Ⅲ fugacity model was used to simulate and calculate the concentrations of PFOS in local air, water, soil and sediment. Physical and chemical parameters of PFOS and environmental parameters of Shenzhen were entered into the model. The simulated concentrations were compared with actual measurements to validate the model, and then analyzed based on the transfer flux of PFOS between media to identify the main transfer route. The input parameters and output results of the model underwent sensitivity analysis and uncertainty analysis, respectively. The simulated concentrations of PFOS in air, water, soil and sediment were 1.4 pg·m-3, 7.0 ng·L-1, 0.39 µg·kg-1 and 0.11 µg·kg-1, in good agreement with the actual measurements. The transfer from air to soil, soil to water and air to water were the main PFOS transfer routes between media, accounting for 32%, 32%, 5.8% of total transfer, respectively. The transfer through water was the major PFOS outlet from a region. The advective input of air and water, temperature, PFOS solubility, precipitation and density of soil and sediment were the key parameters affecting the model output. Uncertainty analysis showed that the coefficient of variation of PFOS concentrations reached the minimum in water and the maximum in soil, which may be caused by the highly changeable content of organic carbon in soil.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(1): 206-9, 2010 Jan.
Article in Chinese | MEDLINE | ID: mdl-20302115

ABSTRACT

The effects of pulsed electric fields (PEFs) applied on the 2 phenolic acids and 3 flavan-3-ols in young red wine, as well as the changes in colour intensity and colour hue, were investigated using a parallel treatment chamber. High performance liquid chromatography (HPLC) coupled with UV-visible detector was used to analyze the contents of these two phenols. The high voltage pulse generator in this experiment designed and produced by Tsinghua University can generate exponential decay pulses. The chambers of this experiment were parallel plate treatment chambers with interelectrode distances of 0.5 cm. The experimental results show that after PEF treatment (energy density: 24.5, 40.5, 60.5 J x mL(-1)) the concentration of most phenolic compounds changed significantly. Moreover, the energy density of 60. 5 J x mL(-1) was chosen as the optimal parameter.


Subject(s)
Color , Phenols/chemistry , Wine , Chromatography, High Pressure Liquid , Electromagnetic Fields
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(8): 2122-5, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-19839322

ABSTRACT

Inactivation effect of pulsed electric field (PEF) on polyphenol oxidase (PPO) and lipoxygenase (LOX) was investigated using a laboratory PEF system with a coaxial treatment chamber. Circular dichroism (CD) and fluorescence analysis were used to study the conformation change of the protein. The experimental results show that PPO and LOX can be effectively inactivated by the PEF treatment. Inactivation effect of PPO and LOX increases with the increase in the applied electric strength and the treatment time. Activity of PPO and LOX can be reduced by 60.3% and 21.7% at 20 kV x cm(-1) after being treated for 320 micros respectively. The decrease of the negative peaks (208 and 215 nm in PPO spectra, 208 nm and 218 nm in LOX spectra) in CD spectra of PPO and LOX shows that PEF treatment caused a loss of alpha-helix and increase in beta-sheet content, indicating that conformation changes occur in the secondary structure of PPO and LOX enzyme. This effect was strengthened as the applied electric field increased: alpha-helical content of PPO and LOX was 56% and 29% after being treated at 8 kV x cm(-1), however, when the electric field was increased up to 20 kV x cm(-1), alpha-helical content of PPO and LOX decreased to 21% and 16% respectively. The decrease rate of alpha-helix and increase rate of beta-sheet in PPO are higher than LOX, indicating that the second conformation of PPO is less resistant to PEF treatment than LOX. The fluorescence intensity of LOX increases after PEF treatment. At the same time, increasing the applied pulsed electric field increases the fluorescence intensity emitted. Fluorescence measurements confirm that tertiary conformation changes occur in the local structure of LOX. However the possible mechanism of the conformation change induced by the PEF treatment is beyond the scope of the present investigation.


Subject(s)
Catechol Oxidase/chemistry , Lipoxygenase/chemistry , Circular Dichroism , Electricity , Fluorescence , Protein Structure, Secondary
8.
Int J Radiat Biol ; 83(6): 421-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17487681

ABSTRACT

PURPOSE: To investigate the effects of exposure to electromagnetic pulses (EMP) on functional indices of the cardiovascular system in male Sprague-Dawley rats. MATERIALS AND METHODS: A tapered parallel plate Gigahertz Transverse Electromagnetic cell (GTEM cell) with a flared rectangular coaxial transmission line was used to expose the rats to EMP (0.5 pps, total 200 pulses and whole-body averaged specific absorption rate 50 mW/kg at 200 kV/m or 75 mW/kg at 400 kV/m). Concurrent sham-exposed animals were used as controls. Cardiovascular functions, namely, heart rate, and systolic, mean and diastolic blood pressures were measured immediately and up to 4 weeks post-exposure using a non-invasive tail-cuff photoelectric sensor sphygmomanometer. RESULTS: The heart rates in sham- and EMP-exposed rats were not significantly changed. In the exposed rats, increased systolic blood pressure (SBP) occurred at 0 h and decreased SBP occurred at 1 day and 3 days after exposure. Significantly higher diastolic blood pressure (DBP) was found at 0 h and significantly lower DBP was found at 12 h, 1 day, and 1 month after exposure. Significantly higher mean arterial pressure (MAP) was noted at 0 h and significantly lower MAP was noted at 1 day. CONCLUSIONS: Significant alterations in arterial blood pressure were observed in rats exposed to EMP exposure while heart rate was not altered.


Subject(s)
Blood Flow Velocity/radiation effects , Blood Pressure/radiation effects , Electromagnetic Fields , Heart Rate/radiation effects , Pulsatile Flow/radiation effects , Whole-Body Irradiation/methods , Animals , Blood Flow Velocity/physiology , Blood Pressure/physiology , Dose-Response Relationship, Radiation , Heart Rate/physiology , Male , Pulsatile Flow/physiology , Radiation Dosage , Rats , Rats, Sprague-Dawley
9.
J Environ Sci (China) ; 16(5): 808-12, 2004.
Article in English | MEDLINE | ID: mdl-15559817

ABSTRACT

Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.


Subject(s)
Electrochemistry/methods , Indigo Carmine/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Air/analysis , Color , Electric Conductivity , Electric Stimulation , Hydrogen Peroxide/chemistry , Ozone/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...