Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34820044

ABSTRACT

Errors in soil moisture adversely impact the modeling of land-atmosphere water and energy fluxes and, consequently, near-surface atmospheric conditions in atmospheric data assimilation systems (ADAS). To mitigate such errors, a land surface analysis is included in many such systems, although not yet in the currently operational NASA Goddard Earth Observing System (GEOS) ADAS. This article investigates the assimilation of L-band brightness temperature (Tb) observations from the Soil Moisture Active Passive (SMAP) mission in the GEOS weakly coupled land-atmosphere data assimilation system (LADAS) during boreal summer 2017. The SMAP Tb analysis improves the correlation of LADAS surface and root-zone soil moisture versus in situ measurements by ~0.1-0.26 over that of ADAS estimates; the unbiased root-mean-square error of LADAS soil moisture is reduced by 0.002-0.008 m3/m3 from that of ADAS. Furthermore, the global land average RMSE versus in situ measurements of screen-level air specific humidity (q2m) and daily maximum temperature (T2mmax) is reduced by 0.05 g/kg and 0.04 K, respectively, for LADAS compared to ADAS estimates. Regionally, the RMSE of LADAS q2m and T2mmax is improved by up to 0.4 g/kg and 0.3 K, respectively. Improvement in LADAS specific humidity extends into the lower troposphere (below ~700 mb), with relative improvements in bias of 15-25%, although LADAS air temperature bias slightly increases relative to that of ADAS. Finally, the root mean square of the LADAS Tb observation-minus-forecast residuals is smaller by up to ~0.1 K than in a land-only assimilation system, corroborating the positive impact of the Tb analysis on the modeled land-atmosphere coupling.

2.
J Hydrometeorol ; 21(12): 2759-2776, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-34163306

ABSTRACT

The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional "grid-by-grid analysis," the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG's accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for "hybrid" data-driven and physics-driven estimates in order to make optimal usage of satellite observations.

3.
J Hydrol (Amst) ; 541(Pt A): 434-456, 2016 Oct.
Article in English | MEDLINE | ID: mdl-30377386

ABSTRACT

An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 hours, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: 1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; 2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and 3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15hrs was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware, configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

SELECTION OF CITATIONS
SEARCH DETAIL
...