Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 77(4): 206-211, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-38047797

ABSTRACT

Non-oxidative coupling of methane (NOCM) is a sought-after reaction that has been studied for decades. Harsh reaction conditions (T >800°C) in the face of limited catalyst stability lead to rapid catalyst deactivation and strong coking, preventing application thus far. Recent reports have shown the significance of an interplay of catalyst nature and reaction conditions, whereas metal carbides have prevailed to play a crucial role which involves incorporation of carbidic carbon in C2Hx and aromatic products. This perspective gives an overview of proposed mechanistic pathways and considerations about experiment conditions in order to foster a rational catalyst design platform for NOCM.

2.
Angew Chem Int Ed Engl ; 62(38): e202307814, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37485913

ABSTRACT

A prototypical material for the oxidative coupling of methane (OCM) is Li/MgO, for which Li is known to be essential as a dopant to obtain high C2 selectivities. Herein, Li/MgO is demonstrated to be an effective catalyst for non-oxidative coupling of methane (NOCM). Moreover, the presence of Li is shown to favor the formation of magnesium acetylide (MgC2 ), while pure MgO promotes coke formation as evidenced by solid-state 13 C NMR, thus indicating that Li promotes C-C bond formation. Metadynamic simulations of the carbon mobility in MgC2 and Li2 C2 at the density functional theory (DFT) level show that carbon easily diffuses as a C2 unit at 1000 °C. These insights suggest that the enhanced C2 selectivity for Li-doped MgO is related to the formation of Li and Mg acetylides.

3.
Chem Sci ; 14(22): 5899-5905, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37293639

ABSTRACT

Transition metal carbides have numerous applications and are known to excel in terms of hardness, thermal stability and conductivity. In particular, the Pt-like behavior of Mo and W carbides has led to the popularization of metal carbides in catalysis, ranging from electrochemically-driven reactions to thermal methane coupling. Herein, we show the active participation of carbidic carbon in the formation of C2 products during methane coupling at high temperature that is associated with the dynamics of Mo and W carbides. A detailed mechanistic study reveals that the catalyst performance of these metal carbides can be traced back to its carbon diffusivity and exchange capability upon interaction with methane (gas phase carbon). A stable C2 selectivity over time on stream for Mo carbide (Mo2C) can be rationalized by fast carbon diffusion dynamics, while W carbide (WC) shows loss of selectivity due to slow diffusion leading to surface carbon depletion. This finding showcases that the bulk carbidic carbon of the catalyst plays a crucial role and that the metal carbide is not only responsible for methyl radical formation. Overall, this study evidences the presence of a carbon equivalent to the Mars-Van Krevelen type mechanism for non-oxidative coupling of methane.

SELECTION OF CITATIONS
SEARCH DETAIL
...