Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 28(1): 127-143, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31880864

ABSTRACT

Interactions between plants and insects are among the most important life functions for all organism at a particular natural community. Usually a large number of samples are required to identify insect diets in food web studies. Previously, Sanger sequencing and next generation sequencing (NGS) with short DNA barcodes were used, resulting in low species-level identification; meanwhile the costs of Sanger sequencing are expensive for metabarcoding together with more samples. Here, we present a fast and effective sequencing strategy to identify larvae of Lepidoptera and their diets at the same time without increasing the cost on Illumina platform in a single HiSeq run, with long-multiplex-metabarcoding (COI for insects, rbcL, matK, ITS and trnL for plants) obtained by Trinity assembly (SHMMT). Meanwhile, Sanger sequencing (for single individuals) and NGS (for polyphagous) were used to verify the reliability of the SHMMT approach. Furthermore, we show that SHMMT approach is fast and reliable, with most high-quality sequences of five DNA barcodes of 63 larvae individuals (54 species) recovered (full length of 100% of the COI gene and 98.3% of plant DNA barcodes) using Trinity assembly (up-sized to 1015 bp). For larvae diets identification, 95% are reliable; the other 5% failed because their guts were empty. The diets identified by SHMMT approach are 100% consistent with the host plants that the larvae were feeding on during our collection. Our study demonstrates that SHMMT approach is reliable and cost-effective for insect-plants network studies. This will facilitate insect-host plant studies that generally contain a huge number of samples.


Subject(s)
Food Deprivation , Herbivory , Moths/physiology , Nicotiana , Pinus , Salix , Vitis , Animals , DNA Barcoding, Taxonomic , DNA, Plant/analysis , Diet , Larva/growth & development , Larva/physiology , Moths/growth & development
2.
Nat Commun ; 9(1): 205, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335414

ABSTRACT

Beetles (Coleoptera) are the most diverse and species-rich group of insects, and a robust, time-calibrated phylogeny is fundamental to understanding macroevolutionary processes that underlie their diversity. Here we infer the phylogeny and divergence times of all major lineages of Coleoptera by analyzing 95 protein-coding genes in 373 beetle species, including ~67% of the currently recognized families. The subordinal relationships are strongly supported as Polyphaga (Adephaga (Archostemata, Myxophaga)). The series and superfamilies of Polyphaga are mostly monophyletic. The species-poor Nosodendridae is robustly recovered in a novel position sister to Staphyliniformia, Bostrichiformia, and Cucujiformia. Our divergence time analyses suggest that the crown group of extant beetles occurred ~297 million years ago (Mya) and that ~64% of families originated in the Cretaceous. Most of the herbivorous families experienced a significant increase in diversification rate during the Cretaceous, thus suggesting that the rise of angiosperms in the Cretaceous may have been an 'evolutionary impetus' driving the hyperdiversity of herbivorous beetles.


Subject(s)
Coleoptera/genetics , Evolution, Molecular , Genetic Variation , Insect Proteins/genetics , Animals , Coleoptera/classification , Insect Proteins/classification , Phylogeny , Species Specificity , Time Factors
3.
Mol Ecol Resour ; 17(6): 1342-1358, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28258659

ABSTRACT

Beetles (Coleoptera) are the most diverse and species-rich insect group, representing an impressive explosive radiation in the evolutionary history of insects, and their evolutionary relationships are often difficult to resolve. The amount of 'traditional markers' (e.g. mitochondrial genes and nuclear rDNAs) for beetle phylogenetics is small, and these markers often lack sufficient signals in resolving relationships for such a rapidly radiating lineage. Here, based on the available genome data of beetles and other related insect species, we performed a genome-wide survey to search nuclear protein-coding (NPC) genes suitable for research on beetle phylogenetics. As a result, we identified 1470 candidate loci, which provided a valuable data resource to the beetle evolutionary research community for NPC marker development. We randomly chose 180 candidate loci from the database to design primers and successfully developed 95 NPC markers which can be PCR amplified from standard genomic DNA extracts. These new nuclear markers are universally applicable across Coleoptera, with an average amplification success rate of 90%. To test the phylogenetic utility, we used them to investigate the backbone phylogeny of Coleoptera (18 families sampled) and the family Coccinellidae (39 species sampled). Both phylogenies are well resolved (average bootstrap support >95%), showing that our markers can be used to address phylogenetic questions of various evolutionary depth (from species level to family level). In general, the newly developed nuclear markers are much easier to use and more phylogenetically informative than the 'traditional markers', and show great potential to expedite resolution of many parts in the Beetle Tree of Life.


Subject(s)
Coleoptera/classification , Coleoptera/genetics , Genetic Variation , Nuclear Proteins/genetics , Phylogeny , Animals , Genetic Markers , Genome, Insect
SELECTION OF CITATIONS
SEARCH DETAIL
...