Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Bioact Mater ; 36: 157-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38463554

ABSTRACT

Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.

2.
J Immunol Res ; 2022: 8326591, 2022.
Article in English | MEDLINE | ID: mdl-35637794

ABSTRACT

Tumor-associated macrophages (TAMs) have been shown to be an essential component of the tumor microenvironment and facilitate the proliferation and invasion of a variety of malignancies. However, the contribution of TAMs to meningioma progression has not been characterized in detail. In this study, we aimed to discover a novel regulatory pathway by which exosome-mediated M2-polarized macrophages participate in meningioma tumorigenesis and progression. Methods. First, the distribution and functional phenotype of macrophages in meningioma tissues were assessed by immunohistochemistry. Macrophage-derived exosomes (MDEs) were characterized, and further cell coculture experiments were performed to explore the effects of M2-MDEs on the proliferation, migration, and invasion of meningioma cells. RNA sequencing was used to analyze the transcriptomic signatures in meningioma cells treated with M2-MDEs. Three-dimensional tumorspheres and xenograft tumor models were used to evaluate the effects of M2-MDEs on meningioma tumorigenesis and development. Results. We found that M2 macrophages were enriched in meningioma tissue. Coculture with meningioma cells induced the M2 polarization of macrophages. We also found that M2-MDEs were able to significantly promote cell proliferation, cell migration, cell invasion, and tumorigenesis in meningiomas. Bioinformatic analysis suggested that the TGF-ß pathway was activated in meningioma cells treated with M2-MDEs. Functional experiments demonstrated that blocking the TGF-ß signaling pathway could effectively reverse the tumor-promotive effects mediated by M2-MDEs. Conclusions. Overall, our study showed that M2-MDEs promoted meningioma development and invasion by activating the TGF-ß signaling pathway. Targeting exosome-mediated intercellular communication in the tumor microenvironment may be a novel therapeutic strategy for meningioma patients.


Subject(s)
Exosomes , Meningeal Neoplasms , Meningioma , Carcinogenesis/metabolism , Cell Line, Tumor , Exosomes/metabolism , Humans , Macrophages/metabolism , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningioma/metabolism , Meningioma/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...