Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38567937

ABSTRACT

BACKGROUND: The superficial palmar arch is a crucial blood supply to the palm. However, it exhibits significant variations, posing challenges in surgical procedures. Gaining a comprehensive understanding of the relationship between different types, physiological indices, and the clinical significance of the superficial palmar arch will enhance the accuracy of diagnosing and treating patients. MATERIALS AND METHODS: In this study, we dissected a total of 72 specimens, comprising 39 males and 33 females. We observed the type, length, and diameter of the superficial palmar arch and analyzed its correlation with the disease. Additionally, we conducted Doppler ultrasound measurements on 20 healthy volunteers (10 males and 10 females) and 18 patients with superficial palmar arch injury (10 males and 8 females) to assess the classification, diameter, intimal thickness, and blood flow velocity of the superficial palmar arch. We collected information on 9 male patients with finger fracture and observed the classification of the superficial palmar arch, fracture healing time, and basic function recovery time. Lastly, we analyzed rare variant specimens encountered during the anatomy process. RESULTS: In the exploration of human anatomy, there were four types of superficial palmar arch: ulnar artery arch type in 17 cases (23.61%), radial ulnar artery type in 46 cases (63.89%), ulnar artery without arch type in 6 cases (8.33%), and 3 cases (4.17%) of double arch type of radial and ulnar artery. One case non-arched type was found in imaging examination (5%). In one elderly male specimen, the hand's superficial palmar arch artery was tortuous and dilated. In addition, there was a positive correlation between the diameter and length of the superficial palmar arch (except the second common palmar digital artery in women), among which the ulnar artery and the third common palmar digital artery had the strongest correlation. Compared to healthy volunteers, patients with ulnar injury in the Radial-ulnar artery type exhibited a decrease in the diameter and blood flow velocity of the ulnar artery, as well as the second and third common palmar digital arteries. No such change was observed in patients with radial injury. Additionally, patients with ulnar injury in other types of Radial-ulnar artery also experienced a decrease in the diameter and blood flow velocity of the ulnar artery. Finger fracture patients with Ulnar artery with arch and Ulnar artery without arch had shorter fracture healing time and basic function recovery time compared to those with Radial-ulnar artery type. CONCLUSIONS: This study investigated the relationship between the classification, physiological index, and clinical significance of the superficial palmar arch at all levels. The results demonstrated that when the superficial palmar arch is damaged, it is important to consider both the classification and the site of damage, as this can potentially result in improved therapeutic outcomes. These findings provide a basis for future clinical research.

2.
ChemSusChem ; : e202400221, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656613

ABSTRACT

Alkali and alkaline earth metal amides are a type of functional materials for hydrogen storage, thermal energy storage, ion conduction, and chemical transformations such as ammonia synthesis and decomposition. The thermal chemistry of lithium amide (LiNH2), as a simple but representative alkali or alkaline earth metal amide, has been well studied previously encouraged by its potentials in hydrogen storage. In comparison, little is known about the interaction of plasma and LiNH2. Herein, we report that the plasma treatment of LiNH2 in an Ar flow under ambient temperature and pressure gives rise to distinctly different reaction products and reaction pathway from that of the thermal process. We found that plasma treatment of LiNH2 leads to the formation of Li colloids, N2, and H2 as observed by UV-vis absorption, EPR, and gas products analysis. Inspired by this very unique interaction between plasma and LiNH2, a chemical loop for ammonia decomposition to N2 and H2 mediated by LiNH2 was proposed and demonstrated.

3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(5): 966-973, 2022 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-36310485

ABSTRACT

As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation ( P< 0.05), in the left central region after anodal-stimulation ( P< 0.05), and in the frontal and right central regions after cathodal-stimulation ( P< 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation ( P< 0.05), in the left frontal and right central regions after anodal- stimulation ( P< 0.05), and in the central and right occipital regions after cathodal-stimulation ( P< 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant ( P> 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Electroencephalography , Stroke/therapy , Electrodes
4.
Insect Sci ; 28(1): 127-143, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31880864

ABSTRACT

Interactions between plants and insects are among the most important life functions for all organism at a particular natural community. Usually a large number of samples are required to identify insect diets in food web studies. Previously, Sanger sequencing and next generation sequencing (NGS) with short DNA barcodes were used, resulting in low species-level identification; meanwhile the costs of Sanger sequencing are expensive for metabarcoding together with more samples. Here, we present a fast and effective sequencing strategy to identify larvae of Lepidoptera and their diets at the same time without increasing the cost on Illumina platform in a single HiSeq run, with long-multiplex-metabarcoding (COI for insects, rbcL, matK, ITS and trnL for plants) obtained by Trinity assembly (SHMMT). Meanwhile, Sanger sequencing (for single individuals) and NGS (for polyphagous) were used to verify the reliability of the SHMMT approach. Furthermore, we show that SHMMT approach is fast and reliable, with most high-quality sequences of five DNA barcodes of 63 larvae individuals (54 species) recovered (full length of 100% of the COI gene and 98.3% of plant DNA barcodes) using Trinity assembly (up-sized to 1015 bp). For larvae diets identification, 95% are reliable; the other 5% failed because their guts were empty. The diets identified by SHMMT approach are 100% consistent with the host plants that the larvae were feeding on during our collection. Our study demonstrates that SHMMT approach is reliable and cost-effective for insect-plants network studies. This will facilitate insect-host plant studies that generally contain a huge number of samples.


Subject(s)
Food Deprivation , Herbivory , Moths/physiology , Nicotiana , Pinus , Salix , Vitis , Animals , DNA Barcoding, Taxonomic , DNA, Plant/analysis , Diet , Larva/growth & development , Larva/physiology , Moths/growth & development
5.
Opt Lett ; 45(19): 5376, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001897

ABSTRACT

This publisher's note contains a correction to Opt. Lett.45, 4984 (2020)OPLEDP0146-959210.1364/OL.402229.

6.
Opt Lett ; 45(18): 4984-4987, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932433

ABSTRACT

The photonic properties of glass ceramics (GCs) are often enabled by encapsulating nanocrystals (NCs) and doped transition metal ions (TMIs). However, it is difficult to probe the optics-related effect between the host NCs' band structure and doped TMIs' d-d orbitals. Herein, perovskite-type KZnF3:NiNCs in KF-ZnF2-SiO2 GCs were prepared and taken as a model system. The excited-state dynamics of host NCs and Ni ions' d-d orbitals were studied by transient absorption spectroscopy. It presents a strong interaction between Ni's d orbitals and the band edge, which could extract excitonic energy in photonic applications. These findings facilitate understanding and design of TMIs-doped GCs in real-life photonic applications.

7.
Nat Commun ; 9(1): 205, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335414

ABSTRACT

Beetles (Coleoptera) are the most diverse and species-rich group of insects, and a robust, time-calibrated phylogeny is fundamental to understanding macroevolutionary processes that underlie their diversity. Here we infer the phylogeny and divergence times of all major lineages of Coleoptera by analyzing 95 protein-coding genes in 373 beetle species, including ~67% of the currently recognized families. The subordinal relationships are strongly supported as Polyphaga (Adephaga (Archostemata, Myxophaga)). The series and superfamilies of Polyphaga are mostly monophyletic. The species-poor Nosodendridae is robustly recovered in a novel position sister to Staphyliniformia, Bostrichiformia, and Cucujiformia. Our divergence time analyses suggest that the crown group of extant beetles occurred ~297 million years ago (Mya) and that ~64% of families originated in the Cretaceous. Most of the herbivorous families experienced a significant increase in diversification rate during the Cretaceous, thus suggesting that the rise of angiosperms in the Cretaceous may have been an 'evolutionary impetus' driving the hyperdiversity of herbivorous beetles.


Subject(s)
Coleoptera/genetics , Evolution, Molecular , Genetic Variation , Insect Proteins/genetics , Animals , Coleoptera/classification , Insect Proteins/classification , Phylogeny , Species Specificity , Time Factors
8.
Mol Ecol Resour ; 17(6): 1342-1358, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28258659

ABSTRACT

Beetles (Coleoptera) are the most diverse and species-rich insect group, representing an impressive explosive radiation in the evolutionary history of insects, and their evolutionary relationships are often difficult to resolve. The amount of 'traditional markers' (e.g. mitochondrial genes and nuclear rDNAs) for beetle phylogenetics is small, and these markers often lack sufficient signals in resolving relationships for such a rapidly radiating lineage. Here, based on the available genome data of beetles and other related insect species, we performed a genome-wide survey to search nuclear protein-coding (NPC) genes suitable for research on beetle phylogenetics. As a result, we identified 1470 candidate loci, which provided a valuable data resource to the beetle evolutionary research community for NPC marker development. We randomly chose 180 candidate loci from the database to design primers and successfully developed 95 NPC markers which can be PCR amplified from standard genomic DNA extracts. These new nuclear markers are universally applicable across Coleoptera, with an average amplification success rate of 90%. To test the phylogenetic utility, we used them to investigate the backbone phylogeny of Coleoptera (18 families sampled) and the family Coccinellidae (39 species sampled). Both phylogenies are well resolved (average bootstrap support >95%), showing that our markers can be used to address phylogenetic questions of various evolutionary depth (from species level to family level). In general, the newly developed nuclear markers are much easier to use and more phylogenetically informative than the 'traditional markers', and show great potential to expedite resolution of many parts in the Beetle Tree of Life.


Subject(s)
Coleoptera/classification , Coleoptera/genetics , Genetic Variation , Nuclear Proteins/genetics , Phylogeny , Animals , Genetic Markers , Genome, Insect
9.
Appl Opt ; 47(31): 5750-2, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19122715

ABSTRACT

We demonstrate the possibility of fabricating an infrared transmitting waveguide by burying fiber in chalcogenide glasses. Two highly mature chalcogenide glasses are used for these experiments. GASIR glass from Umicore IR Glass, Olen, Belgium, with the composition of Ge(22)As(20)Se(58) is used to draw fibers that are then buried in an As(2)S(3) glass substrate. The glasses we used are compatible, and we obtained a high quality interface. We performed a transmission test with a CO(2) laser at 9.3 microm. The potential for extremely low loss planar waveguides is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...