Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Oncol ; 2022: 3780854, 2022.
Article in English | MEDLINE | ID: mdl-35342404

ABSTRACT

Early diagnosis and treatment of gastric precancerous lesions (GPL) are key factors for reducing the incidence and morbidity of gastric cancer. The study is aimed at examining GPL in mice induced by N-methyl-N-nitroso-urea (MNU) and to illustrate the underlying mechanisms of tumorigenesis. In this study, we utilized an in vivo MNU-induced GPL mouse model, and histopathological changes of the gastric mucosa were observed by hematoxylin and eosin (H&E-stain) and alcian blue (AB-PAS-stain). The level of miR-194-5p in the gastric mucosa was determined by real-time polymerase chain reaction. We used transmission electron microscopy to observe the effects of MNU on gastric chief cells and parietal cells. We performed immunohistochemical detection of HIF-1α, vWF, Ki-67, and P53, while the changes in the protein expression of key genes in LKB1-AMPK and AKT-FoxO3 signaling pathways were detected by western blot analysis. We demonstrated that the miR-194-5p expression was upregulated under hypoxia in GPL gastric tissues, and that a high miR-194-5p expression level closely related with tumorigenesis. Mechanistically, miR-194-5p exerted the acceleration of activities related to metabolic reprogramming through LKB1-AMPK and AKT-FoxO3 pathways. Furthermore, similar to miR-194-5p, high expression levels of AMPK and AKT were also related to the metabolic reprogramming of GPL. Moreover, we revealed the correlation between the expression levels of miR-194-5p, p-AMPKα, p-AKT, and FoxO3a. These findings suggest that miR-194-5p/FoxO3 pathway is important for the reversal of metabolic reprogramming in GPL. Thus, exploring strategies to regulate the miR-194-5p/FoxO3a pathway may provide an efficient strategy for the prevention and treatment of GPL.

2.
Article in English | MEDLINE | ID: mdl-34587888

ABSTRACT

BACKGROUND: Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVES: Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION: The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
3.
Front Cell Dev Biol ; 9: 730309, 2021.
Article in English | MEDLINE | ID: mdl-34589493

ABSTRACT

Ginsenoside Rg3 is a steroidal saponin isolated from Panax ginseng. Previous studies have shown that Rg3 treatment downregulates the activity of rapamycin complex 1 (mTORC1) activity and inhibits the growth of cancer cells. However, the inhibitory effect of Rg3 on cancer cells is associated with high concentrations of Rg3 that are difficult to achieve in vivo. The human cervix adenocarcinoma HeLa cells were treated with Rg3. The protein levels of AMP-activated protein kinase alpha (AMPKα), protein kinase B(Akt), ribosomal S6 protein(S6), and Erk were determined by immunoblotting analyses. We used a fluorescent probe to detect reactive oxygen species (ROS) production in living cells. The oxygen consumption rate (OCR) was examined by the Seahorse Extracellular Flux Analyzer. The content of adenosine triphosphate (ATP) was measured by ATPlite kit and Mitotracker was applied to detect the mitochondria. We showed that at lower concentrations, Rg3 activates mTORC1 independent of AKT and AMP-activated protein kinase (AMPK). Rg3 promotes mitochondrial biogenesis and function, increases the oxygen consumption of mitochondria and the content of ATP. This effect is in contrast to that of high concentrations of Rg3, which inhibits cell growth. These findings demonstrate a pro-growth activity of Rg3 that acts through mTORC1 and mitochondrial biogenesis and suggest a dose-dependent effect of Rg3 on tumor cell growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...