Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(20): e202402612, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38410071

ABSTRACT

The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.

2.
J Am Chem Soc ; 145(28): 15553-15564, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401830

ABSTRACT

Both cis- and trans- tetracyclic spiroindolines are the core of many important biologically active indole alkaloids, but the divergent synthesis of these important motifs is largely hampered by the limited stereoselectivity control. A facile stereoinversion protocol is reported here in Michael addition-initiated tandem Mannich cyclizations for constructing tetracyclic spiroindolines, providing an easy access to two diastereoisomeric cores of monoterpene indole alkaloids with high selectivity. The mechanistic studies including in situ NMR experiments, control experiments, and DFT calculations reveal that the reaction undergoes a unique retro-Mannich/re-Mannich rearrangement including a C-C bond cleavage that is very rare for a saturated six-membered carbocycle. Insights into the stereoinversion process have been uncovered, and the major effects were determined to be the electronic properties of N-protecting groups of the indole with the aid of Lewis acid catalysts. By understanding these insights, the stereoselectivity switching strategy is also smoothly applied from enamine substrates to vinyl ether substrates, which are enriched greatly for the divergent synthesis and stereocontrol of monoterpene indole alkaloids. The current reaction also proves to be very practical and was successfully applied to the gram-scale total synthesis of strychnine and deethylibophyllidine in short routes.

SELECTION OF CITATIONS
SEARCH DETAIL
...