Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(13): 10111-10119, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483272

ABSTRACT

We investigate a strain-induced topological phase transition in the ferromagnetic Janus monolayer MnSbBiS2Te2 using first-principles calculations. The electronic, magnetic, and topological properties are studied under biaxial strain within the range of -8 to +8%. The ground state of monolayer MnSbBiS2Te2 is metallic with an out-of-plane magnetic easy axis. A band gap is opened when a compressive strain between -4% and -7% is applied. We observe a topological phase transition at a biaxial strain of -5%, where the material becomes a Chern insulator exhibiting a quantum anomalous hall (QAH) effect. We find that biaxial strain and spin-orbit coupling (SOC) are responsible for the topological phase transition in MnSbBiS2Te2. In addition, we find that biaxial strain can alter the direction of the magnetic easy axis of MnSbBiS2Te2. The Curie temperature is calculated using the Heisenberg model and is found to be 24 K. This study could pave the way to the design of topological materials with potential applications in spintronics, quantum computing, and dissipationless electronics.

2.
Adv Sci (Weinh) ; 10(25): e2301043, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37377084

ABSTRACT

Phase-change random-access memory (PCRAM) devices suffer from pronounced resistance drift originating from considerable structural relaxation of phase-change materials (PCMs), which hinders current developments of high-capacity memory and high-parallelism computing that both need reliable multibit programming. This work realizes that compositional simplification and geometrical miniaturization of traditional GeSbTe-like PCMs are feasible routes to suppress relaxation. While to date, the aging mechanisms of the simplest PCM, Sb, at nanoscale, have not yet been unveiled. Here, this work demonstrates that in an optimal thickness of only 4 nm, the thin Sb film can enable a precise multilevel programming with ultralow resistance drift coefficients, in a regime of ≈10-4 -10-3 . This advancement is mainly owed to the slightly changed Peierls distortion in Sb and the less-distorted octahedral-like atomic configurations across the Sb/SiO2 interfaces. This work highlights a new indispensable approach, interfacial regulation of nanoscale PCMs, for pursuing ultimately reliable resistance control in aggressively-miniaturized PCRAM devices, to boost the storage and computing efficiencies substantially.

3.
Nat Commun ; 14(1): 3691, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344472

ABSTRACT

Polarons are entities of excess electrons dressed with local response of lattices, whose atomic-scale characterization is essential for understanding the many body physics arising from the electron-lattice entanglement, yet difficult to achieve. Here, using scanning tunneling microscopy and spectroscopy (STM/STS), we show the visualization and manipulation of single polarons in monolayer CoCl2, that are grown on HOPG substrate via molecular beam epitaxy. Two types of polarons are identified, both inducing upward local band bending, but exhibiting distinct appearances, lattice occupations and polaronic states. First principles calculations unveil origin of polarons that are stabilized by cooperative electron-electron and electron-phonon interactions. Both types of polarons can be created, moved, erased, and moreover interconverted individually by the STM tip, as driven by tip electric field and inelastic electron tunneling effect. This finding identifies the rich category of polarons in CoCl2 and their feasibility of precise control unprecedently, which can be generalized to other transition metal halides.

4.
J Phys Chem Lett ; 13(28): 6407-6411, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35802831

ABSTRACT

Understanding the dynamics of charge transfer at vertical heterostructures of transition metal dichalcogenide monolayers is fundamentally important for future technological applications, given the unique feature of van der Waals interactions at the interface. Here, we employ time-dependent density functional theory formalism combined with molecular dynamics to investigate photoexcited electrons and holes in the type-I MoS2/PtSe2 van der Waals heterobilayer. While type-I junctions have been traditionally viewed as being ineffective in photocarrier separation, we show that here a different mechanism from type-II is at play, which effectively separates photoelectrons from photoholes. The key is the phonon bottleneck, arising from the characteristically different dynamic band alignments in the valence and conduction bands, respectively, which only affects the transfer of holes but not electrons. The disparity between electron and hole transfer rates offers a new direction for effective control of charge separation at interfaces.

5.
Adv Mater ; 34(17): e2200117, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35236008

ABSTRACT

Realizing van der Waals (vdW) epitaxy in the 1980s represents a breakthrough that circumvents the stringent lattice matching and processing compatibility requirements in conventional covalent heteroepitaxy. However, due to the weak vdW interactions, there is little control over film qualities by the substrate. Typically, discrete domains with a spread of misorientation angles are formed, limiting the applicability of vdW epitaxy. Here, the epitaxial growth of monocrystalline, covalent Cr5 Te8 2D crystals on monolayer vdW WSe2 by chemical vapor deposition is reported, driven by interfacial dative bond formation. The lattice of Cr5 Te8 , with a lateral dimension of a few tens of micrometers, is fully commensurate with that of WSe2 via 3 × 3 (Cr5 Te8 )/7 × 7 (WSe2 ) supercell matching, forming a single-crystalline moiré superlattice. This work establishes a conceptually distinct paradigm of thin-film epitaxy, termed "dative epitaxy", which takes full advantage of covalent epitaxy with chemical bonding for fixing the atomic registry and crystal orientation, while circumventing its stringent lattice matching and processing compatibility requirements; conversely, it ensures the full flexibility of vdW epitaxy, while avoiding its poor orientation control. Cr5 Te8 2D crystals grown by dative epitaxy exhibit square magnetic hysteresis, suggesting minimized interfacial defects that can serve as pinning sites.

6.
J Phys Chem Lett ; 13(11): 2632-2637, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35297251

ABSTRACT

Achieving stable high-magnetism light-element structures at nanoscale is vital to the field of magnetism, which has traditionally been ruled by transition-metal elements with localized d or f electrons. By first-principles calculations, we show that superatoms made of pure earth-abundant light elements (i.e., boron and nitrogen) exhibit desired magnetic properties that rival those of rare-earth elements, and the magnetism is dictated entirely by Hund's maximum spin rule. Importantly, the chemical and structural stabilities of the superatoms are not jeopardized by its high spins and are in fact better than those of transition-metal-element-embedded clusters. Our work thus establishes the basic principles for designing novel light-element, high-stability, and high-moment magnetic superatoms.

7.
Adv Mater ; 34(17): e2109074, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35226767

ABSTRACT

The photocatalytic CO2 reduction reaction is a sustainable route to the direct conversion of greenhouse gases into chemicals without additional energy consumption. Given the vast amount of greenhouse gas, numerous efforts have been devoted to developing inorganic photocatalysts, e.g., titanium dioxide (TiO2 ), due to their stability, low cost, and environmentally friendly properties. However, a more efficient TiO2 photocatalyst without noble metals is highly desirable for CO2 reduction, and it is both difficult and urgent to produce selectively valuable compounds. Here, a novel "single-atom site at the atomic step" strategy is developed by anchoring a single tungsten (W) atom site with oxygen-coordination at the intrinsic steps of classic TiO2 nanoparticles. The composition of active sites for CO2 reduction can be controlled by tuning the additional W5+ to form W5+ -O-Ti3+ sites, resulting in both significant CO2 reduction efficiency with 60.6 µmol g- 1 h- 1 and selectivity for methane (CH4 ) over carbon monoxide (CO), which exceeds those of pristine TiO2 by more than one order of magnitude. The mechanism relies on the accurate control of the single-atom sites at step with 22.8% coverage of surface sites and the subsequent excellent electron-hole separation along with the favorable adsorption-desorption of intermediates at the sites.

8.
J Phys Chem Lett ; 12(51): 12329-12335, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34935388

ABSTRACT

Molecular linkers, such as cysteine, are used to stabilize colloidal quantum dots (QDs) and anchor them. Despite the typically large molecular HOMO/LUMO gap of linkers, they can increase the quantum yield and provide an effective charge-transfer channel. Through first-principles calculations, we investigate the ligand binding and the implications for charge transfer using a prototypical CdSe-Cysteine-MoS2 three-way heterostructure. We find that the deprotonated ligand interacts with both sides of the heterostructure, which allows for successful self-passivation of the cysteine ligand molecule and the formation of dative bonds with a greatly reduced molecular gap compared with the gas phase. This leads to the formation of a charge-transfer state that is delocalized across the ligand and can directly assist electron transfer from the conduction band of colloidal CdSe QDs to the underlying MoS2 substrate, which is a mechanism that could extend far beyond 0D-2D hybrid systems.

9.
J Phys Chem Lett ; 12(33): 8046-8052, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34433273

ABSTRACT

Two-dimensional (2D) monolayer-bilayer (ML-BL) lateral junctions (LJs) have recently attracted attention due to their straightforward synthesis and resulting clean interface. Such systems consist of an extended ML with a secondary layer present only over half of the system, leading to an interface that is associated with the terminating edge of the secondary half layer. Our first-principles calculations reveal that the edges of the half layer completely lack reconstruction in the presence of unintentional dopants, in this case, Re. This observation is in startling contrast to the known physics of three-dimensional (3D) semiconductor surfaces where reconstruction has been widely observed. Herein, the electrostatics of the reduced dimensionality allows for greater separation between compensating defects, enabling dopants to remotely passivate edge states without needing to directly participate in the chemistry.

10.
Adv Sci (Weinh) ; 8(13): 2004185, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34258152

ABSTRACT

One central task of developing nonvolatile phase change memory (PCM) is to improve its scalability for high-density data integration. In this work, by first-principles molecular dynamics, to date the thinnest PCM material possible (0.8 nm), namely, a monolayer Sb2Te3, is proposed. Importantly, its SET (crystallization) process is a fast one-step transition from amorphous to hexagonal phase without the usual intermediate cubic phase. An increased spatial localization of electrons due to geometrical confinement is found to be beneficial for keeping the data nonvolatile in the amorphous phase at the 2D limit. The substrate and superstrate can be utilized to control the phase change behavior: e.g., with passivated SiO2 (001) surfaces or hexagonal Boron Nitride, the monolayer Sb2Te3 can reach SET recrystallization in 0.54 ns or even as fast as 0.12 ns, but with unpassivated SiO2 (001), this would not be possible. Besides, working with small volume PCM materials is also a natural way to lower power consumption. Therefore, the proposed PCM working process at the 2D limit will be an important potential strategy of scaling the current PCM materials for ultrahigh-density data storage.

11.
ACS Appl Mater Interfaces ; 13(27): 32450-32460, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34196518

ABSTRACT

Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.

12.
Phys Chem Chem Phys ; 23(17): 10518-10523, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33899853

ABSTRACT

Owing to its novel electronic and magnetic properties, two-dimensional CrI3 has great potential in the application of spintronic devices. However, as an inevitable line defect, the properties of the edges of CrI3 remain elusive. Here, via first-principles calculations with spin-orbit coupling, we investigated the thermodynamic stabilities, electronic and magnetic properties of thirteen CrI3 edges with different structures. We showed that zigzag edges are more stable than armchair edges, and a CrI3 nanoribbon can be either metallic or insulating depending on its chemical growth conditions. The edge stability and associated electronic properties can be understood in terms of the octahedron ligand field and electron counting model. In most cases, both the magnetic moment and Curie temperature can be enhanced by edges, which are in startle contrast to the surfaces of three-dimensional ferromagnetic materials, where a magnetic dead layer is often observed.

13.
ACS Nano ; 15(5): 8184-8191, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33723991

ABSTRACT

Exploring two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials of physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted to be kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure. The 2D AlSb exhibits a band gap of 0.93 eV versus the predicted 1.06 eV, which is substantially smaller than the 1.6 eV of bulk. We also attempt the less-stable InSb DLHC structure; however, it grows into bulk islands instead. The successful growth of a DLHC material here demonstrates the feasibility for the realization of a large family of 2D DLHC traditional semiconductors with characteristic excitonic, topological, and electronic properties.

14.
Adv Mater ; 33(13): e2003327, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33615589

ABSTRACT

The platinum single-atom-catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO2 ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported. These Co-Pt dimer sites originate from loading high-density Pt single-atoms and Co single-atoms, with them anchoring randomly on the TiO2 substrate. This dual-single-atom catalyst yields 13.4% dimer sites and exhibits an ultrahigh and stable photocatalytic activity with a rate of 43.467 mmol g-1 h-1 and external quantum efficiency of ≈83.4% at 365 nm. This activity far exceeds those of equal amounts of Pt single-atom and typical Pt clustered catalysts by 1.92 and 1.64 times, respectively. The enhancement mechanism relies on the oxygen-coordinated Co-O-Pt dimer coupling, which can mutually optimize the electronic states of both Pt and Co sites to weaken H* binding. Namely, the "mute" Co single-atom is activated by Pt single-atom and the activity of the Pt atom is further enhanced through the dimer interaction. This strategy of nonbonding interactive dimer sites and the oxygen-mediated catalytic mechanisms provide emerging rich opportunities for greatly improving the catalytic efficiency and developing novel catalysts with creating new electronic states.

15.
ACS Nano ; 15(2): 2497-2505, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33481561

ABSTRACT

The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator composed of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are also epitaxially grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 Å with an insulating band gap of 6 eV. Our low-energy electron diffraction measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moiré pattern analysis shows the BeO honeycomb structure maintains long-range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complementary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single-crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring 2D electronic materials.

16.
ACS Nano ; 14(10): 13611-13618, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33054170

ABSTRACT

Semiconducting monolayers of a 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T' phase transition in a suspended 2D monolayer membrane of MoS2. Electronic transport shows unexpected memristive properties in the MoS2 membrane, in the absence of any external dopants. A strong mechanical softening of the membrane is measured concurrently and may only be related to the 2H-1T' phase transition, which imposes a 3% directional elongation of the topological 1T' phase with respect to the semiconducting 2H. We note that only a few percent 2H-1T' phase switching is sufficient to observe measurable memristive effects. Our experimental results combined with first-principles total energy calculations indicate that sulfur vacancy diffusion plays a key role in the initial nucleation of the phase transition. Our study clearly shows that nanomechanics represents an ultrasensitive technique to probe the crystal phase transition in 2D materials or thin membranes. Finally, a better control of the microscopic mechanisms responsible for the observed memristive effect in MoS2 is important for the implementation of future devices.

17.
ACS Omega ; 5(30): 18579-18583, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775859

ABSTRACT

BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, nontoxicity with earth-abundant elements, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single-junction solar cell. Here, we report the synthesis of Ba(Zr1-x Ti x )S3 perovskite compounds with a reduced band gap. It is found that Ti-alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 atom % alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.

18.
J Phys Chem Lett ; 11(16): 6544-6550, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32693591

ABSTRACT

Carrier dynamics across the interface of heterostructures have important technological, photovoltaic, and catalytic implications. Using first-principles time-dependent density functional theory, we have systematically investigated the charge transfer of excited carriers from CdS to MoS2 and found that two interdependent mechanisms are responsible for the transfer, one slow and one fast. While the slower process may be attributed to typical electron-phonon coupling, the interfacial dipole resulting from this transfer enables a fast secondary process involving a level crossing of the excited carrier state in CdS with receiving states in MoS2. An analysis based on the interfacial binding energy reveals that the Cd-terminated (001) interface is by far the most energetically favorable, which in addition to its calculated fast resonant electron transfer suggests it is a good candidate to explain the experimentally observed charge transfer between CdS and MoS2.

19.
Phys Rev Lett ; 124(16): 166401, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32383949

ABSTRACT

While various excitonic insulators have been studied in the literature, due to the perceived too-small spin splitting, spin-triplet excitonic insulator is rare. In two-dimensional systems such as a semihydrogenated graphene (known as graphone), however, it is possible, as revealed by first-principles calculations coupled with Bethe-Salpeter equation. The critical temperature, given by an effective Hamiltonian, is 11.5 K. While detecting excitonic insulators is still a daunting challenge, the condensation of triplet excitons will result in spin superfluidity, which can be directly measured by a transport experiment. Nonlocal dielectric screening also leads to an unexpected phenomenon, namely, an indirect-to-direct transition crossover between single-particle band and exciton dispersion in the semihydrogenated graphene, which offers yet another test by experiment.

20.
Phys Chem Chem Phys ; 22(16): 8713-8718, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32270831

ABSTRACT

Critical topological phases, possessing flat bands, provide a platform to study unique topological properties and transport phenomena under a many-body effect. Here, we propose that critical nodal points and nodal lines or rings can be found in Kagome lattices. After the C3 rotation symmetry of a single-layer Kagome lattice is eliminated, a quadratic nodal point splits into two critical nodal points. When the layered Kagome lattices are stacked into a three-dimensional (3D) structure, critical nodal lines or rings can be generated by tuning the interlayer coupling. Furthermore, we use Kagome graphene as an example to identify that these critical phases could be obtained in real materials. We also discuss flat-band-induced ferromagnetism. It is found that the flat band splits into two spin-polarized bands by hole-doping, and as a result the Dirac-type critical phases evolve into Weyl-type phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...