Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Arch Virol ; 161(12): 3435-3443, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27638775

ABSTRACT

To analyze the variation in rice black-streaked dwarf virus (RBSDV) in an area with high incidence of maize rough dwarf disease (MRDD), the RBSDV S1 segment in a collection of 100 maize isolates (sample population A100) from Jining, Shandong Province, was sequenced. An additional 21 maize and rice isolates (subpopulation B21) that were sampled from nine other geographic locations in China in 2012 and 2013 were used as a control. A total of 914 nucleotide mutations, including 239 singleton variable and 675 parsimony-informative sites were detected among the segment 1 (S1) sequences from A100. A total of 614 nucleotide mutation sites including 164 singleton variable and 450 parsimony-informative sites were detected among the S1 sequences from B21, while 97.55 % of the parsimony-informative sites from B21 were also detected in A100. The nucleotide sequence diversities of A100 (π = 0.0479) and B21 (π = 0.0396) were significantly different (P = 0.0002) but showed similar trends. Phylogenetic analysis showed that the 121 RBSDV isolates could be classified into two groups based on their S1 sequences, independent of subpopulation, with a combination of host species and locations. A100 and B21 were under the same level of negative and purifying selection, with Ka/Ks ratios of 0.0337 and 0.0369, respectively. The combined RBSDV population, including 121 isolates, was expanding, with negative values for Tajima's D, Fu and Li's D, and Fu and Li's F in both A100 and B21, except Tajima's D in A100. Based on S1, the RBSDV population in China has long-term phytogeographic stability, and there do not appear to be any newly-emerging strains.


Subject(s)
Genetic Variation , Plant Diseases/virology , Reoviridae/classification , Reoviridae/genetics , Zea mays/virology , China , Cluster Analysis , Evolution, Molecular , Genotype , Mutation , Phylogeny , Reoviridae/isolation & purification , Sequence Analysis, DNA , Sequence Homology
2.
J Exp Bot ; 67(15): 4593-609, 2016 08.
Article in English | MEDLINE | ID: mdl-27493226

ABSTRACT

Maize rough dwarf disease (MRDD) is a viral infection that results in heavy yield losses in maize worldwide, particularly in the summer maize-growing regions of China. MRDD is caused by the Rice black-streaked dwarf virus (RBSDV). In the present study, analyses of microRNAs (miRNAs), the degradome, and transcriptome sequences were used to elucidate the RBSDV-responsive pathway(s) in maize. Genomic analysis indicated that the expression of three non-conserved and 28 conserved miRNAs, representing 17 known miRNA families and 14 novel miRNAs, were significantly altered in response to RBSDV when maize was inoculated at the V3 (third leaf) stage. A total of 99 target transcripts from 48 genes of 10 known miRNAs were found to be responsive to RBSDV infection. The annotations of these target genes include a SQUAMOSA promoter binding (SPB) protein, a P450 reductase, an oxidoreductase, and a ubiquitin-related gene, among others. Characterization of the entire transcriptome suggested that a total of 28 and 1085 differentially expressed genes (DEGs) were detected at 1.5 and 3.0 d, respectively, after artificial inoculation with RBSDV. The expression patterns of cell wall- and chloroplast-related genes, and disease resistance- and stress-related genes changed significantly in response to RBSDV infection. The negatively regulated genes GRMZM2G069316 and GRMZM2G031169, which are the target genes for miR169i-p5 and miR8155, were identified as a nucleolin and a NAD(P)-binding Rossmann-fold superfamily protein in maize, respectively. The gene ontology term GO:0003824, including GRMZM2G031169 and other 51 DEGs, was designated as responsive to RBSDV.


Subject(s)
Plant Diseases/virology , Reoviridae/physiology , Zea mays/virology , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Zea mays/genetics , Zea mays/metabolism
4.
Theor Appl Genet ; 129(12): 2333-2342, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27544523

ABSTRACT

KEY MESSAGE: A QTL qMrdd8 that confers resistance to MRDD was fine mapped into an interval of 347 kb; one SNP and two InDels identified in the interval were significantly associated with resistance to MRDD. Maize rough dwarf disease (MRDD) is highly prevalent in the summer maize-growing areas in China, and leads to significant yield losses in maize (Zea mays L.). In this study, the quantitative trait locus (QTL) qMrdd8, which confers resistance to MRDD, was fine mapped. Initially, qMrdd8 was consistently identified in the interval between the simple sequence repeat markers umc1617 and phi121 in three F2 sub-populations derived from a cross between the resistant recombinant inbred line NL203 and the susceptible line B73. Subsequently, qMrdd8 was fine mapped into an interval of 347 kb defined by the markers IDRQ2 and IDRQ20 using a recombinant-derived progeny test strategy. Based on single nucleotide polymorphism (SNP) genotypes identified using the MaizeSNP50 BeadChip, a long haplotype including qMrdd8 was identified in four resistant inbred lines. One SNP, the 2549-bp insertion/deletion polymorphism (InDel) InDel25, and the 2761-bp InDel27, which all were significantly associated with resistance to MRDD in a set of 226 maize inbred lines (P < 0.05), were detected within qMrdd8. Furthermore, two candidate genes, CG1 and CG2, were detected in the interval using RNA sequencing (RNA-Seq), and InDel25 was localized within the candidate gene CG1. In conclusion, the fine mapping of qMrdd8 will be helpful in cloning the resistance gene, and the three polymorphic markers identified in this study could be used to improve MRDD resistance via a marker-assisted selection approach.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics , Genetic Linkage , Genotype , Haplotypes , INDEL Mutation , Phenotype , Plant Breeding , Plant Diseases/virology , Plant Viruses , Polymorphism, Single Nucleotide , Zea mays/virology
5.
PLoS One ; 11(7): e0158971, 2016.
Article in English | MEDLINE | ID: mdl-27391593

ABSTRACT

Waxy maize is prevalently grown in China and other countries due to the excellent characters and economic value. However, its low content of lysine can't meet the nutritional requirements of humans and livestock. In the present study, we introgressed the opaque2 (o2) allele into waxy maize line Zhao OP-6/O2O2 by using marker-assisted selection (MAS) technique and successfully improved the lysine content and quality of waxy maize. Transcript abundance analysis indicated that the wx1 expression levels had no difference between Zhao OP-6/o2o2 and Zhao OP-6/O2O2. However, Zhao OP-6/o2o2 was characterized by a phenotype of hard and vitreous kernels and accumulation of protein bodies at smaller size (one third of that of parents) but in larger numbers. Biochemical analyses showed that Zhao OP-6/o2o2 had 16.7% less free amino acids than Zhao OP-6/O2O2, especially those derived from glycolytic intermediates, but its content of lysine was increased by 51.6% (0.47% vs. 0.31%). The content of amylopectin was 98.5% in Zhao OP-6/o2o2, significantly higher than that in Zhao OP-6/O2O2 (97.7%). Proteomic analyses indicated that o2 introgression not only decreased the accumulation of various zein proteins except for 27-kDa γ-zein, but also affected other endosperm proteins related to amino acid biosynthesis, starch-protein balance, stress response and signal transduction. This study gives us an intriguing insight into the metabolism changes in endosperm of waxy maize introgressed with opaque2.


Subject(s)
Alleles , Endosperm/metabolism , Proteome/metabolism , Seed Storage Proteins/metabolism , Zea mays/metabolism , Amylopectin/genetics , Amylopectin/metabolism , Endosperm/genetics , Proteome/genetics , Seed Storage Proteins/genetics , Zea mays/genetics
6.
BMC Genomics ; 17: 178, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26940065

ABSTRACT

BACKGROUND: Plant architecture attributes, such as plant height, ear height, and internode number, have played an important role in the historical increases in grain yield, lodging resistance, and biomass in maize (Zea mays L.). Analyzing the genetic basis of variation in plant architecture using high density QTL mapping will be of benefit for the breeding of maize for many traits. However, the low density of molecular markers in existing genetic maps has limited the efficiency and accuracy of QTL mapping. Genotyping by sequencing (GBS) is an improved strategy for addressing a complex genome via next-generation sequencing technology. GBS has been a powerful tool for SNP discovery and high-density genetic map construction. The creation of ultra-high density genetic maps using large populations of advanced recombinant inbred lines (RILs) is an efficient way to identify QTL for complex agronomic traits. RESULTS: A set of 314 RILs derived from inbreds Ye478 and Qi319 were generated and subjected to GBS. A total of 137,699,000 reads with an average of 357,376 reads per individual RIL were generated, which is equivalent to approximately 0.07-fold coverage of the maize B73 RefGen_V3 genome for each individual RIL. A high-density genetic map was constructed using 4183 bin markers (100-Kb intervals with no recombination events). The total genetic distance covered by the linkage map was 1545.65 cM and the average distance between adjacent markers was 0.37 cM with a physical distance of about 0.51 Mb. Our results demonstrated a relatively high degree of collinearity between the genetic map and the B73 reference genome. The quality and accuracy of the bin map for QTL detection was verified by the mapping of a known gene, pericarp color 1 (P1), which controls the color of the cob, with a high LOD value of 80.78 on chromosome 1. Using this high-density bin map, 35 QTL affecting plant architecture, including 14 for plant height, 14 for ear height, and seven for internode number were detected across three environments. Interestingly, pQTL10, which influences all three of these traits, was stably detected in three environments on chromosome 10 within an interval of 14.6 Mb. Two MYB transcription factor genes, GRMZM2G325907 and GRMZM2G108892, which might regulate plant cell wall metabolism are the candidate genes for qPH10. CONCLUSIONS: Here, an ultra-high density accurate linkage map for a set of maize RILs was constructed using a GBS strategy. This map will facilitate identification of genes and exploration of QTL for plant architecture in maize. It will also be helpful for further research into the mechanisms that control plant architecture while also providing a basis for marker-assisted selection.


Subject(s)
Chromosome Mapping/methods , Genetic Markers , Quantitative Trait Loci , Zea mays/genetics , DNA, Plant/genetics , Genetic Linkage , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
7.
PLoS One ; 10(6): e0131410, 2015.
Article in English | MEDLINE | ID: mdl-26121638

ABSTRACT

Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease or rice black-streaked dwarf disease and can lead to severe yield losses in maize and rice. To analyse RBSDV evolution, codon usage bias and genetic structure were investigated in 111 maize and rice RBSDV isolates from eight geographic locations in 2013 and 2014. The linear dsRNA S7 is A+U rich, with overall codon usage biased toward codons ending with A (A3s, S7-1: 32.64%, S7-2: 29.95%) or U (U3s, S7-1: 44.18%, S7-2: 46.06%). Effective number of codons (Nc) values of 45.63 in S7-1 (the first open reading frame of S7) and 39.96 in S7-2 (the second open reading frame of S7) indicate low degrees of RBSDV-S7 codon usage bias, likely driven by mutational bias regardless of year, host, or geographical origin. Twelve optimal codons were detected in S7. The nucleotide diversity (π) of S7 sequences in 2013 isolates (0.0307) was significantly higher than in 2014 isolates (0.0244, P = 0.0226). The nucleotide diversity (π) of S7 sequences in isolates from Jinan (0.0391) was higher than that from the other seven locations (P < 0.01). Only one S7 recombinant was detected in Baoding. RBSDV isolates could be phylogenetically classified into two groups according to S7 sequences, and further classified into two subgroups. S7-1 and S7-2 were under negative and purifying selection, with respective Ka/Ks ratios of 0.0179 and 0.0537. These RBSDV populations were expanding (P < 0.01) as indicated by negative values for Tajima's D, Fu and Li's D, and Fu and Li's F. Genetic differentiation was detected in six RBSDV subpopulations (P < 0.05). Absolute Fst (0.0790) and Nm (65.12) between 2013 and 2014, absolute Fst (0.1720) and Nm (38.49) between maize and rice, and absolute Fst values of 0.0085-0.3069 and Nm values of 0.56-29.61 among these eight geographic locations revealed frequent gene flow between subpopulations. Gene flow between 2013 and 2014 was the most frequent.


Subject(s)
Evolution, Molecular , Oryza/virology , Plant Diseases/virology , Reoviridae/genetics , Base Composition/genetics , Base Sequence , Codon/genetics , Gene Flow , Genetic Variation , Haplotypes/genetics , Nucleotides/genetics , Open Reading Frames/genetics , Phylogeny , Recombination, Genetic/genetics , Reoviridae/isolation & purification , Selection, Genetic
8.
Arch Virol ; 160(4): 1119-23, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25633210

ABSTRACT

Rice black-streaked dwarf virus (RBSDV) is an economically important virus that causes maize rough dwarf disease and rice black-streaked dwarf disease in East Asia. To study RBSDV variation and recombination, we examined the segment 9 (S9) sequences of 49 RBSDV isolates from maize and rice in China. Three S9 recombinants were detected in Baoding, Jinan, and Jining, China. Phylogenetic analysis showed that Chinese RBSDV isolates could be classified into two groups based on their S9 sequences, regardless of host or geographical origin. Further analysis suggested that S9 has undergone negative and purifying selection.


Subject(s)
Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , Recombination, Genetic , Reoviridae/classification , Reoviridae/genetics , China , Molecular Sequence Data , Oryza/virology , Reoviridae/isolation & purification , Zea mays/virology
9.
PLoS One ; 9(1): e85159, 2014.
Article in English | MEDLINE | ID: mdl-24416355

ABSTRACT

The recessive opaque-2 mutant gene (o2) reduces α-zeins accumulation in maize endosperm, changes the amino acid composition of maize kernels, induces an opaque endosperm, and increases the lysine content of kernels. The quality protein maize (QPM) inbred line CA339 (o2o2) and an elite normal inbred line liao2345 (O2O2) were used to construct o2 near-isogenic lines (NILs) by marker-assisted selection (MAS) using the co-dominant SSR marker phi057. Two specific o2 NILs were constructed, named liao2345/o2-1 and liao2345/o2-2. However, the kernel phenotypes of the two o2 NILs were different from each other. liao2345/o2-1 had the wild-type vitreous endosperm, which is similar to its recurrent parent liao2345, while the endosperm of liao2345/o2-2 was opaque, identical to typical o2 mutant individuals. In comparison to their recurrent parent liao2345, the lysine concentration of liao2345/o2-1 was similar and the lysine concentration in liao2345/o2-2 was doubled. SDS-PAGE analysis indicated that liao2345/o2-1 had the same zeins ratio as liao2345, whereas the zeins concentration of liao2345/o2-2 was markedly lower. Sequence and transcript abundance analyses indicated that the CDS of two o2 NILs are derived from CA339, but they have different promoters. The O2 transcript of liao2345/o2-2 is largely inhibited because of an rbg transposable element inserted between the TATA box and initiator codon of liao2345/o2-2. We concluded that different crossing-over patterns during the process of o2 NIL construction resulted in the different kernel phenotypes of the two o2 NILs. We surmise that the reversion of liao2345/o2-1 to wild type was due to the recombination with the wild type liao2345 promoter during introgression and backcrossing. The o2 mutant gene of donor (CA339) is a null mutant because of low O2 expression. However, its CDS probably encodes a protein with normal function which can maintain the normal accumulation of zeins in maize endosperm.


Subject(s)
DNA Transposable Elements , DNA-Binding Proteins/genetics , Endosperm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Zea mays/genetics , Breeding , Codon , Crosses, Genetic , DNA-Binding Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Endosperm/metabolism , Genetic Markers , Genotype , Lysine/metabolism , Phenotype , Plant Proteins/metabolism , Promoter Regions, Genetic , RNA, Messenger/metabolism , Recombination, Genetic , Transcription Factors/metabolism , Zea mays/metabolism , Zein/genetics , Zein/metabolism
10.
Yi Chuan ; 35(8): 1007-13, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-23956089

ABSTRACT

Maize (Zea mays L.) populations are potential sources of favorable alleles absent in parental inbred lines to improve elite hybrids. The maize hybrid Zhengdan 958 has been hampered by the lack of favorable new alleles for improving yield and commodity quality. In the present study, 16 testcrosses made by using eight synthetic populations as the donors and the two parental lines of Zhengdan 958 as the receptors were evaluated in 2009 and 2010 at Shunyi, Beijing and Xinxiang, Henan Province for grain yield and test weight. Four genetic parameters were used to determine the breeding potential of eight synthetic populations as the donors to improve the target hybrid. Several synthetic populations were identified as the potential sources of favorable alleles absent in the target hybrid for each trait evaluated. The two most promising germplasms, WBMC-4 and Shanxi Syn3, had the potential for simultaneously improving grain yield and test weight of the target hybrid, which could be used to improve the parental lines Zheng 58 and Chang 7-2, respectively, and further broaden the germplasm base of Chinese heterotic groups PA and Sipingtou.


Subject(s)
Hybrid Vigor , Zea mays , Alleles , Breeding , Hybridization, Genetic , Phenotype , Zea mays/genetics
11.
BMC Plant Biol ; 13: 98, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23826856

ABSTRACT

BACKGROUND: Kernel weight, controlled by quantitative trait loci (QTL), is an important component of grain yield in maize. Cytokinins (CKs) participate in determining grain morphology and final grain yield in crops. ZmIPT2, which is expressed mainly in the basal transfer cell layer, endosperm, and embryo during maize kernel development, encodes an isopentenyl transferase (IPT) that is involved in CK biosynthesis. RESULTS: The coding region of ZmIPT2 was sequenced across a panel of 175 maize inbred lines that are currently used in Chinese maize breeding programs. Only 16 single nucleotide polymorphisms (SNPs) and seven haplotypes were detected among these inbred lines. Nucleotide diversity (π) within the ZmIPT2 window and coding region were 0.347 and 0.0047, respectively, and they were significantly lower than the mean nucleotide diversity value of 0.372 for maize Chromosome 2 (P < 0.01). Association mapping revealed that a single nucleotide change from cytosine (C) to thymine (T) in the ZmIPT2 coding region, which converted a proline residue into a serine residue, was significantly associated with hundred kernel weight (HKW) in three environments (P <0.05), and explained 4.76% of the total phenotypic variation. In vitro characterization suggests that the dimethylallyl diphospate (DMAPP) IPT activity of ZmIPT2-T is higher than that of ZmIPT2-C, as the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) consumed by ZmIPT2-T were 5.48-, 2.70-, and 1.87-fold, respectively, greater than those consumed by ZmIPT2-C. The effects of artificial selection on the ZmIPT2 coding region were evaluated using Tajima's D tests across six subgroups of Chinese maize germplasm, with the most frequent favorable allele identified in subgroup PB (Partner B). CONCLUSIONS: These results showed that ZmIPT2, which is associated with kernel weight, was subjected to artificial selection during the maize breeding process. ZmIPT2-T had higher IPT activity than ZmIPT2-C, and this favorable allele for kernel weight could be used in molecular marker-assisted selection for improvement of grain yield components in Chinese maize breeding programs.


Subject(s)
Alkyl and Aryl Transferases/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Seeds/growth & development , Zea mays/enzymology , Zea mays/genetics , Alkyl and Aryl Transferases/metabolism , China , Genetic Variation , Inbreeding , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Zea mays/growth & development , Zea mays/physiology
12.
Yi Chuan ; 35(6): 703-13, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-23774015

ABSTRACT

Introgression of exotic maize (Zea mays L.) germplasm is an effective approach to broadening the genetic base of Chinese germplasm. America is the center of maize origin and germplasm diversity. By analyzing general combining ability effects and heterosis responses among maize populations from the U.S., International Maize and Wheat Improvement Center (CIMMYT), and Brazil studied by different authors, 24 elite maize populations from America region, including eight U.S. populations, eight CIMMYT populations, and eight Brazilian populations, were identified as having high potential in China. Based on adaptation improvement, we suggest to introgress BSSS(R)C10, BS10(FR)C14, BS13(S)C9, BSK(HI)C8 Syn 3, BR106, Pop44(C8), and Pop45(C3) into Chinese heterotic group A, and introgress BS11(FR)C14, BS16(S)C3 Syn 2, BS29(R)C3, BSCB1(R)C14, BR105, and Pop42(C4) into Chinese heterotic group B by forming semi-exotic populations or pools, respectively, in order to broaden the Chinese germplasm base.


Subject(s)
Zea mays/genetics , Brazil , China , United States
13.
Mol Genet Genomics ; 288(3-4): 89-99, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23474695

ABSTRACT

Maize rough dwarf disease (MRDD, a viral disease) results in significant grain yield losses, while genetic basis of which is largely unknown. Based on comparative genomics, eukaryotic translation initiation factor 4E (eIF4E) was considered as a candidate gene for MRDD resistance, validation of which will help to understand the possible genetic mechanism of this disease. ZmeIF4E (orthologs of eIF4E gene in maize) encodes a protein of 218 amino acids, harboring five exons and no variation in the cDNA sequence is identified between the resistant inbred line, X178 and susceptible one, Ye478. ZmeIF4E expression was different in the two lines plants treated with three plant hormones, ethylene, salicylic acid, and jasmonates at V3 developmental stage, suggesting that ZmeIF4E is more likely to be involved in the regulation of defense gene expression and induction of local and systemic resistance. Moreover, four cis-acting elements related to plant defense responses, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS were detected in ZmeIF4E promoter for harboring sequence variation in the two lines. Association analysis with 163 inbred lines revealed that one SNP in EECCRCAH1 is significantly associated with CSI of MRDD in two environments, which explained 3.33 and 9.04 % of phenotypic variation, respectively. Meanwhile, one SNP in GT-1 motif was found to affect MRDD resistance only in one of the two environments, which explained 5.17 % of phenotypic variation. Collectively, regulatory motifs respectively harboring the two significant SNPs in ZmeIF4E promoter could be involved in the defense process of maize after viral infection. These results contribute to understand maize defense mechanisms against maize rough dwarf virus.


Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Zea mays/genetics , Base Sequence , Cyclopentanes/pharmacology , Disease Resistance/genetics , Ethylenes/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Data , Nucleotide Motifs/genetics , Oxylipins/pharmacology , Plant Diseases/genetics , Plant Diseases/virology , Plant Growth Regulators/pharmacology , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid/genetics , Reoviridae/physiology , Reverse Transcriptase Polymerase Chain Reaction , Salicylic Acid/pharmacology , Sequence Analysis, DNA , Zea mays/growth & development , Zea mays/virology
14.
Phytopathology ; 102(7): 692-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22439860

ABSTRACT

The major quantitative trait locus (QTL) qHS2.09 plays an important role in resistance to head smut during maize breeding and production. In this study, a near-isogenic line (NIL), L34, which harbors the major QTL qHS2.09 in bin 2.09, was developed using a resistant donor 'Mo17' in a susceptible genetic background 'Huangzao4'. Using 18,683 genome-wide polymorphic loci, this major QTL was finely mapped into an interval of ≈1.10 Mb, flanked by single nucleotide polymorphism (SNP) markers PZE-102187307 and PZE-102188421. Moreover, the favorable allele from 'Mo17' for SNP PZE-102187611 in this interval that was most significantly associated with resistance to head smut (P = 1.88 E-10) and accounted for 39.7 to 44.4% of the phenotypic variance in an association panel consisting of 80 inbred lines. With combined linkage and association mapping, this major QTL was finally located between SNP PZE-102187486 and PZE-102188421 with an interval of ≈1.00 Mb. Based on the pedigrees of 'Mo17' and its derivatives widely used in temperate maize breeding programs, the favorable haplotype from 'Mo17' is shown to be the main source of resistance to head smut in these lines. Therefore, the SNPs closely linked to the major QTL qHS2.09, detected in both linkage and association mapping, and could be useful for marker-assisted selection in maize breeding programs.


Subject(s)
Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Zea mays/genetics , Chromosome Mapping , Genetic Markers , Haplotypes , Microsatellite Repeats , Plant Diseases , Polymorphism, Single Nucleotide , Quantitative Trait Loci
15.
Planta ; 235(1): 205-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21870098

ABSTRACT

The recessive mutant allele of the opaque2 gene (o2) alters the endosperm protein pattern and increases the kernel lysine content of maize (Zea mays L.). In this study, sequencing results showed that the o2 mutant was successfully introgressed into 12 elite normal maize inbred lines by marker assisted selection (MAS). The average genetic similarity between these normal inbred lines and their o2 near-isogenic lines (NILs) was more than 95%. Kernel lysine content increased significantly in most of o2 NILs lines relative to normal elite inbreds, but remained unchanged in the genetic backgrounds Dan598o2 and Liao2345o2. Moreover, the kernel characteristics of these two o2 NILs did not differ from the other inbred lines. The results of lysine content analysis in the F1 hybrids between Liao2345o2 and Dan598o2 and other o2 NILs demonstrated that gene(s) other than opaque2 may control kernel lysine content in these two o2 NILs. The results of zein analysis showed that 22-kD α-zein synthesis was reduced or absent, and the 19-kD α-zein synthesis was greatly reduced compared with the recurrent parents in most o2 NILs except for Dan598o2 and Liao2345o2. Our results indicate that gene(s) other than opaque2 may play more important roles in zein synthesis and kernel lysine content in some maize genetic backgrounds.


Subject(s)
Lysine/biosynthesis , Seeds/genetics , Seeds/metabolism , Zea mays/genetics , Zea mays/metabolism , Zein/biosynthesis , Chimera , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Lysine/genetics , Zein/genetics
16.
PLoS One ; 6(11): e28009, 2011.
Article in English | MEDLINE | ID: mdl-22132192

ABSTRACT

BACKGROUND: Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the SmartArray™ and GeneChip® microarray systems to perform a genome-wide search to detect miRNAs responding to the chronic and transient nitrate limiting conditions in maize. Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. They were verified by real time stem loop RT-PCR, and some with additional time points of nitrate limitation. The miRNAs identified showed overlapping or unique responses to chronic and transient nitrate limitation, as well as tissue specificity. The potential target genes of these miRNAs in maize were identified. The expression of some of these was examined by qRT-PCR. The potential function of these miRNAs in responding to nitrate limitation is described. CONCLUSIONS/SIGNIFICANCE: Genome-wide miRNAs responding to nitrate limiting conditions in maize leaves and roots were identified. This provides an insight into the timing and tissue specificity of the transcriptional regulation to low nitrate availability in maize. The knowledge gained will help understand the important roles miRNAs play in maize responding to a nitrogen limiting environment and eventually develop strategies for the improvement of maize genetics.


Subject(s)
Genome, Plant/genetics , MicroRNAs/genetics , Nitrates/pharmacology , Plant Leaves/genetics , Plant Roots/genetics , RNA, Plant/genetics , Zea mays/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/genetics , Genes, Plant/genetics , MicroRNAs/metabolism , Nitrogen/pharmacology , Plant Leaves/drug effects , Plant Roots/drug effects , RNA, Plant/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Zea mays/drug effects
17.
PLoS One ; 6(9): e24861, 2011.
Article in English | MEDLINE | ID: mdl-21949770

ABSTRACT

Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436-0.566) were generally much higher than individual SNPs (0.247-0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2-100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10-100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5-10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection.


Subject(s)
Haplotypes/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Seeds/genetics , Tropical Climate , Zea mays/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Population Dynamics
18.
J Integr Plant Biol ; 53(8): 641-52, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21564545

ABSTRACT

Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identified the functional genetic variations underlying drought tolerance by association analysis. Across 80 lines, 1 006 polymorphic SNPs (65.5% of the total) in the assay with good call quality were used to estimate the pattern of genetic diversity, population structure, and familial relatedness. The analysis showed the best number of fixed subgroups was six, which was consistent with their original sources and results using only simple sequence repeat markers. Pairwise linkage disequilibrium (LD) and association mapping with phenotypic traits investigated under water-stressed and well-watered regimes showed rapid LD decline within 100-500 kb along the physical distance of each chromosome, and that 29 SNPs were associated with at least two phenotypic traits in one or more environments, which were related to drought-tolerant or drought-responsive genes. These drought-tolerant SNPs could be converted into functional markers and then used for maize improvement by marker-assisted selection.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Polymorphism, Single Nucleotide/genetics , Zea mays/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Frequency/genetics , Genetic Markers , Genetics, Population , Genome-Wide Association Study , Inbreeding , Linkage Disequilibrium/genetics , Phenotype , Population Dynamics , Quantitative Trait, Heritable
19.
Genetica ; 139(4): 479-87, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21437581

ABSTRACT

Plant invertases catalyze the conversion of sucrose to glucose and fructose, which are distinct signals of widely varied stress-tolerance processes, including the biosynthesis and detection of hormones under water deficit. In the invertase gene family, the candidate gene ivr2 encoding plant acid-soluble invertase plays a vital role in drought tolerance. In this study, a putative genomic sequence of ivr2 including three exons and two introns was acquired and genetically analyzed using bioinformatics and statistics, based on a partial ivr2 gene sequence of the GenBank library. The ivr2 genomic sequence data from 106 maize inbred lines were obtained using five nested primer pairs. Further analysis showed that the detected polymorphic sites were mainly located in exon-1, intron-1 and exon-2 regions; High linkage disequilibrium level and low nucleotide diversity were identified at this ivr2 locus. Association mapping combined the genotypic and phenotypic data, and a total of 48 associations showed high contributions to the variations in grain yield and its components under well-watered and water-stressed conditions over 2 years of experiments. This suggested that functional polymorphisms in ivr2 were possibly associated with maize drought tolerance. This provides reference information for efficient marker-assisted selection of superior alleles in drought tolerance breeding programs.


Subject(s)
Droughts , Polymorphism, Genetic , Zea mays/genetics , Alleles , Base Sequence , Gene Expression Regulation, Plant/genetics , Gene Order , Genes, Plant , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Molecular Sequence Data , Stress, Physiological/genetics
20.
Ying Yong Sheng Tai Xue Bao ; 22(12): 3358-64, 2011 Dec.
Article in Chinese | MEDLINE | ID: mdl-22384609

ABSTRACT

Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.


Subject(s)
Conservation of Natural Resources , Ecosystem , Geographic Information Systems , Remote Sensing Technology , Ecology/economics , Evaluation Studies as Topic , Models, Theoretical , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...