Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(6): 3173-3180, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38301606

ABSTRACT

Currently, organic-inorganic hybrid cuprous-based halides are receiving substantial attention for their eco-friendliness, distinctive structures, and outstanding photophysical properties. Nevertheless, most of the reported cuprous-based halides demand deep ultraviolet excitation with a narrow excitation range that can meet the commercial requirement. Herein, zero-dimensional (0D) cuprous-based halide (C4H10N)4Cu4I8 single crystals (SCs) were synthesized, with an ultrabroad band excitation ranging 260-450 nm and a greenish-yellow emission band peaking at 560 nm. Excitingly, (C4H10N)4Cu4I8 also features a large Stokes shift of 300 nm, a high photoluminescence quantum yield (PLQY) of up to 84.66%, and a long lifetime of 137 µs. Furthermore, density functional theory calculations were performed to explore the relationship between structure and photophysical properties, and the photoluminescence performance of (C4H10N)4Cu4I8 originates from the electron interactions in [Cu2I4]2- clusters. Taking advantage of broad band excitation and excellent photoluminescent performances, a high luminescence characteristic UV-pumped light-emitting diode (LED) device with remarkable color stability was fabricated by employing the as-synthesized (C4H10N)4Cu4I8 SCs, which present the promising applications of low-dimensional cuprous-based halides in solid-state lighting.

2.
PLoS One ; 17(10): e0276536, 2022.
Article in English | MEDLINE | ID: mdl-36301858

ABSTRACT

The purpose of a rock bolt is to improve the strength capacity of a jointed rock mass. The strengthened arch controlling area can be formed based on the superposition of the controlling influence range of the bolt with the controlling influence angle of rock bolt playing an important role. However, quantitative research on the influence angle is still rare. In this study, numerical simulations and mathematical analysis are used to study the law of stress field distribution and the controlling influence angle through a single bolt, and the following conclusions can be obtained. (1) The compressive stress field is roughly distributed in an "Apple shape" and in a "conical" spatial distribution. (2) The bolt controlling angle is not a constant 45°, and it is influenced by the rock mass strength and bolt parameters. It decreases with the increasing elastic modulus of the bolt, bolt diameter and bolt length. It also increases with the increasing pretension and rock mass strength. The length has less influence on the supporting range. (3) Based on the experimental results, an optimal analytical model to predict the bolt's controlling influence angle was developed. The analytical model includes the influences of the rock mass strength and bolt parameters. (4) A comparison between the model predictions with the results from the Dabei Mining 103 face transportation tunnel and the existing results shows the rationale behind the original support design scheme and an improvement over the existing results.


Subject(s)
Data Compression , Elastic Modulus
3.
Inorg Chem ; 61(20): 8076-8082, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35537082

ABSTRACT

To design nonlinear optical (NLO) materials, we focused on combinations of d10 metal cation (Cd2+)-based chloride and morpholine molecules to form organic-inorganic hybrids. The O of morpholine containing lone-pair electrons can be integrated with Cd2+ by a ligand-to-metal charge transfer (LMCT) strategy to build acentric structures benefiting from the second-order Jahn-Teller effect. Introduction of the high-electronegativity chlorine can make polyhedrons of acentric crystals more distorted and conducive to a strong second harmonic generation (SHG) response. Therefore, (Morpholinium)2Cd2Cl6 crystals were constructed and synthesized by a solvent evaporation method. (Morpholinium)2Cd2Cl6 belongs to the orthorhombic P212121 space group and shows a one-dimensional (1D) structure with distorted [CdCl6] and [CdCl4O2] octahedrons. The short cutoff edge of (Morpholinium)2Cd2Cl6 was determined to be about 230 nm. The SHG response of (Morpholinium)2Cd2Cl6 exhibited an intensity of approximately 0.73 × KDP as estimated by the powder second harmonic generation technique. Furthermore, related theoretical calculations were performed to study the relationship of the band structure, refractive anisotropy, electronic state, and nonlinear optical response. Besides, (Morpholinium)2Cd2Cl6 showed relatively good thermal stability. This work can serve as a guide for the design and synthesis of new large NLO hybrid crystals with d10 transition metals.

4.
ACS Appl Mater Interfaces ; 14(8): 10478-10488, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35179347

ABSTRACT

TiNb2O7 (TNO) is a competitive candidate of a fast-charging anode due to its high specific capacity. However, the insulator nature seriously hinders its rate performance. Herein, the La3+-doped mesoporous TiNb2O7 materials (La-M-TNO) were first synthesized via a facile one-step solvothermal method with the assistance of polyvinyl pyrrolidone (PVP). The synergic effect of La3+ doping and the mesoporous structure enables a dual improvement on the electronic conductivity and ionic diffusion coefficient, which delivers an impressive specific capacity of 213 mAh g-1 at 30 C. The capacity retention (@30C/@1C) increases from 33 to 53 and 74% for TNO, M-TNO, and La-M-TNO (0.03), respectively, demonstrating a step-by-step improvement of rate performance by making porous structures and intrinsic conductivity enhancement. DFT calculations verify that the enhancement in electronic conductivity due to La3+ doping and oxygen vacancy, which induce localized energy levels via slight hybridization of O 2p, Ti 3d, and Nb 4d orbits. Meanwhile, the GITT result indicates that PVP-induced self-assembly of TNO accelerates the lithium ion diffusion rate by shortening the Li+ diffusion path. This work verifies the effectiveness of the porous structure and highlights the significance of electronic conductivity to rate performance, especially at >30C. It provides a general approach to low-conductivity electrode materials for fast Li-ion storage.

5.
Opt Lett ; 46(6): 1301-1304, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720172

ABSTRACT

Temperature-induced redshift of the V-O charge transfer band edge and the temperature quenching effect were combined for designing ratiometric optical thermometry. Following this approach, opposite thermal behaviors of Tm3+ and Eu3+ emissions were realized in the range of 300 to 380 K in Tm3+/Eu3+ co-doped YVO4. Applying the temperature dependent fluorescence intensity ratio of Eu3+ to Tm3+ as temperature readout, the maximal relative sensitivity reaches up to 4.6%K-1 around 330 K. This result makes our proposed strategy an excellent candidate for developing high-sensitivity optical thermometry.

6.
Opt Express ; 28(10): 14396-14403, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403480

ABSTRACT

Ratiometric optical thermometry was designed using temperature-induced shift of V-O charge transfer band (CTB) edge combined with temperature-induced variation of Tb3+ emission in YV1-xPxO4. P was introduced into YVO4 lattice to form YV1-xPxO4 solid solution successfully, with the purpose of enhancing Tb3+ emission. Under 352 nm excitation which locates in the tail of the V-O CTB, emission spectra of YV0.3P0.7O4:Tb3+, Eu3+/Sm3+ were recorded at a series of temperatures ranging from 300 to 440 K. It is demonstrated that Tb3+ and Eu3+/Sm3+ emissions exhibit opposite temperature dependences. The mechanisms for such opposite variations have been interpreted in detail. Based on the varied fluorescence intensity ratio of Eu3+/Sm3+ to Tb3+ with temperature, high relative sensitivity was obtained with a maximal value of 2.85% K-1 around 365 K. Our results imply that the proposed strategy is a promising candidate for high-sensitive optical temperature sensing.

7.
Opt Express ; 26(21): 27339-27345, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30469804

ABSTRACT

A novel optical thermometry is put forward, based on the cooperation of temperature-induced red shift of the charge transfer band (CTB) edge of the vanadates and thermal population of the thermally coupled energy levels (TCELs). Particularly, temperature-dependent CTB of Sm3+ (Er3+) doped LuVO4 was investigated from 300 to 480 K. Then, under the excitation of 360 nm at which the excitation efficiency enhances with temperature due to the temperature induced red shift of the CTB edge, temperature-dependent emissions of the TCELs of Sm3+ and Er3+ were investigated. The results indicate that the emission from the upper-level in the TCELs exhibits a dramatic increase, along with the increase of temperature. High relative sensitivity of 4304/T2 was obtained, which is remarkably superior to the previous reported sensors, using the temperature-dependent fluorescence intensity ratio of TCELs. This suggests that the proposed strategy is a promising candidate for highly sensitive optical thermometry.

8.
Chemistry ; 20(31): 9510-3, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24975031

ABSTRACT

Changes in the valence state of transition-metal ions in oxides drastically modify the chemical and physical properties of the compounds. Intersite charge transfer (ISCT), which involves simultaneous changes in the valence states of two valence-variable transition-metal cations at different crystallographic sites, further expands opportunities to show multifunctional properties. To explore new ISCT materials, we focus on A-site-ordered perovskite-structure oxides with the chemical formula AA'3 B4 O12 , which contain different transition-metal cations at the square-planar A' and octahedral B sites. We have obtained new A-site-ordered perovskites LaCu3 Cr4 O12 and YCu3 Cr4 O12 by synthesis under high-pressure and high-temperature conditions and found that they showed temperature-induced ISCT between A'-site Cu and B-site Cr ions. The compounds are the first examples of those, in which Cr ions are involved in temperature-induced ISCT. In contrast to the previously reported ISCT compounds, LaCu3 Cr4 O12 and YCu3 Cr4 O12 showed positive-thermal-expansion-like volume changes at the ISCT transition.

9.
Inorg Chem ; 53(1): 594-9, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24328260

ABSTRACT

A crossover from the A-site-ordered double-perovskite structure with Im3̅ cubic symmetry to the simple-perovskite structure with Pnma orthorhombic symmetry is found in LnMn3V4O12 (Ln = La, Nd, Gd, Y, Lu) synthesized under high-pressure conditions. Relatively large Ln(3+) ions (La(3+), Nd(3+), and Gd(3+)) induce the a(+)a(+)a(+) in-phase cooperative tilting of the VO6 octahedra, resulting in the A-site-ordered double-perovskite structure with chemical composition Ln(3+)Mn(2+)3V(3.75+)4O12. Compounds with small Ln(3+) ions like Y(3+) and Lu(3+), on the other hand, crystallize with the Pnma simple-perovskite structure with chemical composition (Ln(3+)1/4Mn(2+)3/4)V(3.75+)O3, where the Ln(3+) and Mn(2+) ions are disordered at the A site. The random distribution of the small A-site cation induces the a(-)b(+)a(-) tilting distortion of the VO6 octahedra. The observed phase crossover is well explained by the structural stability calculation based on the bond-valence-sum model, and the most stable crystal structure gives the smallest unit-cell volume. This A-site-cation size-dependent phase transition between the A-site-ordered double-perovskite and A-site-disordered simple-perovskite structures in LnMn3V4O12 is thus a result of the structural stability due to the cooperative tilting of the VO6 octahedra. The Mn(2+) ions at the A'(A) site contribute local magnetic moments, whereas the V(3.75+) ions at the B site play a role in metallic conduction. The observed magnetic behaviors are consistent with the order-disorder distribution of the Mn(2+) ions at the A site, antiferromagnetism in the A-site-ordered double perovskites, and magnetic spin glass in the A-site-disordered simple perovskites.

10.
Inorg Chem ; 52(18): 10610-4, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23978188

ABSTRACT

Solid solutions of Pauli-paramagnetic CaCu3V4O12 and antiferromagnetic CaMn3V4O12 were prepared by a high-pressure synthesis technique. All samples crystallized in the A-site-ordered perovskite structure with isovalent Cu(2+) and Mn(2+) ions at the square-planar A' site. The V ion at the B site kept a charge state close to +4 in all of the solid solutions, and the electrons of V were delocalized and contributed to the metallic properties. The substitution of Mn(2+) for Cu(2+) in CaCu3V4O12, where both Cu and V electrons were delocalized, produced the S = 5/2 localized moments, and the spins at the Mn site interacted antiferromagnetically. Spin-glass-like magnetic behaviors due to the random distribution of Cu/Mn ions at the A' site were observed at intermediate compositions of the solid solution, whereas the antiferromagnetic transition was observed at the end composition CaMn3V4O12.

11.
J Am Chem Soc ; 135(16): 6056-60, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23088383

ABSTRACT

A-site-ordered perovskite-structure oxides with Mn and V at A' and B sites, respectively, were synthesized by using a high-pressure method. Valence-state analyses revealed that the A-site substitution modulated the valence states of the Mn ions at the A' site and V ions at the B site sequentially. By changing the A-site ions from Na(+) to Ca(2+) and from Ca(2+) to La(3+), the valence distribution changed site-selectively from Na(+)Mn(2.33+)3V(4+)4O12 to Ca(2+)Mn(2+)3V(4+)4O12 and to La(3+)Mn(2+)3V(3.75+)4O12. The electrons of the A'-site Mn were localized and contributed to the magnetic properties, that is, spin-glass-like behavior in NaMn3V4O12 and antiferromagnetic behavior in CaMn3V4O12 and LaMn3V4O12. The valence electrons of the B-site V, in contrast, were delocalized, as could be seen from the low resistivity of the samples. The delocalized electrons at the B-site V did not correlate with the localized spins at the A'-site Mn.

12.
J Am Chem Soc ; 134(9): 4068-71, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22352415

ABSTRACT

Single-crystal Ca(10)(Pt(4)As(8))(Fe(1.8)Pt(0.2)As(2))(5) superconducting (SC) nanowhiskers with widths down to hundreds of nanometers were successfully grown in a Ta capsule in an evacuated quartz tube by a flux method. Magnetic and electrical properties measurements demonstrate that the whiskers have excellent crystallinity with critical temperature of up to 33 K, upper critical field of 52.8 T, and critical current density of J(c) of 6.0 × 10(5) A/cm(2) (at 26 K). Since cuprate high-T(c) SC whiskers are fragile ceramics, the present intermetallic SC whiskers with high T(c) have better opportunities for device applications. Moreover, although the growth mechanism is not understood well, the technique can be potentially useful for growth of other whiskers containing toxic elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...