Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 660: 617-627, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266343

ABSTRACT

Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 µmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.

2.
Small ; : e2309091, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38247184

ABSTRACT

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58 Fe0.38 P0.07 O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

3.
J Org Chem ; 89(1): 644-655, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38088130

ABSTRACT

A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.

4.
J Org Chem ; 88(23): 16598-16608, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37948397

ABSTRACT

An effective method for accessing diverse difluoroalkylated pyrrolo[1,2-a]indolediones via visible-light-induced PhI(OAc)2-promoted cascade difluoroalkylation/cyclization reaction under mild conditions has been established. This method is noteworthy for its use of DMSO-H2O as a green medium at room temperature and avoidance of photocatalysts. The reactions are straightforward to execute and convenient to expand on, provide good to excellent yields, and have good functional group tolerance.

5.
J Org Chem ; 88(16): 11712-11727, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37530760

ABSTRACT

A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.

6.
ACS Omega ; 8(31): 28702-28714, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576646

ABSTRACT

The quantitative identification of the coal texture is of great importance as a crucial parameter for coalbed methane (CBM) reservoir evaluation. This study combined drilling core data, electrical imaging logging data, and four conventional logging data, namely, compensation density (DEN), natural γ (GR), deep lateral resistivity (RD), and acoustic time difference (AC), to achieve accurate inversion of coal texture in the Shouyang Block. Meanwhile, wavelet analysis and Fisher discriminant analysis were introduced to the inversion process to further improve the accuracy. Through the utilization of software packages, such as Matlab and SPSS, the establishment of the coal texture logging interpretation chart of the No. 15 coal seam in the Shouyang block was successfully realized. The outcome of this comprehensive study reveals that the coal texture logging interpretation chart is an effective tool for the identification and classification of each coal texture and gangue. Moreover, the validity and reliability of this method were tested and confirmed using wells CS-8 and CS-9 in the region, achieving an accuracy of 97.1 and 93.2%, respectively. This innovative method has significant prospects for predicting and evaluating the coal texture in the Shouyang Block, which can be further applied to other regions.

7.
J Colloid Interface Sci ; 650(Pt B): 1773-1785, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37506418

ABSTRACT

Sonodynamic therapy (SDT) can generate reactive oxygen species to kill cancer cells by activating sonosensitizers under ultrasound (US) irradiation. Nevertheless, its application is greatly limited by low quantum yield of sonosensitizers, high levels of endogenous glutathione (GSH) and tumor hypoxia. Herein, a GSH-activated sonosensitizers with synergistic therapy effect (chemodynamic therapy (CDT) and SDT) are developed by depositing Fe(III)-artemisinin infinite coordination polymers (Fe(III)-ART CPs) in pores of mesoporous TiO2 nanoparticles (NPs). The formed Fe(III)-ART-TiO2 NPs have high sono-induced electron-hole separation efficiency because the deposited Fe(III)-ART CPs can provide isolated intermediate bands to capture sono-induced electrons in TiO2 NPs. Meanwhile, Fe3+ in Fe(III)-ART-TiO2 NPs are reduced to Fe2+ by GSH with oxygen-deficient sites generated to further capture sono-induced electrons in TiO2 NPs. Based on this, the reaction efficiency between water molecules and sono-induced holes is high enough to generate numerous hydroxyl radicals (•OH) without oxygen participated for overcoming tumor hypoxia. Additionally, through consuming GSH, the generated Fe2+ can catalyze ART to produce C-centered free radicals for CDT. Owing to these characteristics, Fe(III)-ART-TiO2 NPs show significant tumor suppression ability and good biocompatibility in vivo. The strategy of using CDT agent to modify sonosensitizers offers new options to improve SDT effect without introducing harmful substances.


Subject(s)
Nanoparticles , Neoplasms , Humans , Ferric Compounds , Hypoxia , Oxygen , Glutathione , Reactive Oxygen Species , Cell Line, Tumor , Neoplasms/drug therapy
8.
Biomed Mater ; 18(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36645918

ABSTRACT

The response sensitivity of surface material plays an important role in adjustable nano-bio interactionin vivo. In this present, a zwitterionic polymer (polyzwitterion) containing quaternary ammonium cation and sulfonamide anion poly(4-((4-(3-(methacryloyloxy)propoxy)phenyl) sulfonamido)-N, N, N-trimethyl-4-oxobutan-1-aminium chloride) (PMPTSA) was synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization to explore the pH responsive behavior in tumors. The PMPTSA-coated gold nanoparticles (PMPTSA-@-Au NPs) showed zwitterionic nature such as antifouling ability, low cellular uptake and prolonged circulation time similar with common hydrophilic polymers, including polyethylene glycol (PEG), poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate) functional gold nanoparticles in physiological environment (pH 7.4). A high sensitivity and reversible positive charge conversion of P(MPTSA)-@-Au NPs at tumor slight acidic microenvironment (∼pH 6.8) leaded to an enhanced cellular internalization than that at pH 7.4 and increased tumor accumulation compared with PEG, polycarboxybetaines and polymer sulphobetaine (PSB) functional gold nanoparticles. The highly pH responsive PMPTSA will provide the promising application in cancer nanomedicine.


Subject(s)
Metal Nanoparticles , Nanoparticles , Gold , Polymers , Polyethylene Glycols , Hydrogen-Ion Concentration
9.
Small ; 19(14): e2206861, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36604967

ABSTRACT

Because of the instability and Fenton reactivity of non-precious metal nitrogen-carbon based catalyst when processing the oxygen reduction reaction (ORR), seeking for electrocatalysts with highly efficient performance becomes very highly desired to speed up the commercialization of fuel cell. Herein, chromium (Cr)-N4  electrocatalyst containing extraterrestrial S formed axial S1 -Cr1 N4  bonds (S1 Cr1 N4 C) is achieved via an assembly polymerization and confined pyrolysis strategy. Benefiting from the adjusting  coordination configuration and electronic structure of the metal center through axial coordination, S1 Cr1 N4 C exhibits enhanced the intrinsic activity (half-wave potential (E1/2 ) is 0.90 V versus reversable hydrogen electrode, RHE) compared with that of CrN4 C and Pt/C catalysts. More notably, the catalyst is almost inert in catalyzing the Fenton reaction, and thus shows the high stability. Density functional theory (DFT) results further reveal that the existence of axial S atoms in S1 Cr1 N4 C moiety has the better ORR activity than Cr1 N4 C moieties. The axial S ligand in S1 Cr1 N4 C moiety can break the electron localization around the planar Cr1 N4  active center, which facilitated the rate-limiting reductive release of OH* and accelerated overall ORR process. The present work opens up a new avenue to modulate the axial ligand type of the single-atoms (SAs) active center to enhance intrinsic SAs performances.

10.
ACS Appl Mater Interfaces ; 14(48): 53724-53735, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399021

ABSTRACT

Designing plasmonic photocatalysts with spatially controlled catalytic sites is an effective strategy to boost the sunlight-driven chemical transformation efficiency through plasmonic enhancement. Herein, we describe a facile method for the synthesis of TiO2-tipped Au nanobipyramids (NBPs) to give (Au NBP)/t-TiO2 nanodumbbells. The surfactant cetyltrimethylammonium bromide concentration is the key factor in the construction of this type of unique nanostructure. The photocatalytic aerobic oxidative coupling of amines using the plasmonic photocatalysts with the dumbbell-like and core@shell structures indicates that the TiO2-tipped ends for the photo-reduction and the exposed adjacent Au surface for the photo-oxidation on (Au NBP)/t-TiO2 can significantly improve the photocatalytic activity. The underlying mechanism of the photocatalytic oxidative coupling of benzylamine over (Au NBP)/t-TiO2 has been thoroughly investigated. Both experimental and simulation results for (Au NBP)/t-TiO2 and (Au nanorod)/t-TiO2 confirm the important effect of the plasmonic hotspots on the enhancement of the photocatalytic activity.

11.
Org Biomol Chem ; 20(48): 9722-9733, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36440712

ABSTRACT

A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.


Subject(s)
Alkenes , Transition Elements , Cyclization , Quinazolinones , Molecular Structure , Free Radicals
12.
Nanoscale Adv ; 4(5): 1394-1407, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36133678

ABSTRACT

Large micropore surface area, superior electrical conductivity and suitable pore size are simultaneously desired characteristics for high-performance capacitive carbons. However, these desired features tend to be mutually competing, and are generally difficult to integrate into a single carbon. Considering this challenge, we developed a sustainable, less time-demanding, pollution-free strategy to construct highly graphitized porous carbon (GPC) by one-step heat-treatment. This approach achieves the need of the abovementioned characteristics for capacitive carbons, wherein potassium ferrate works as both an activating agent and graphitization catalyst to achieve synchronous hierarchical porosity and graphitization of wasted natural wood, and the resultant carbon materials possess a large micropore surface area of 870.4 m2 g-1, a highly graphitic carbon skeleton and a well-interconnected micro-meso-macropore structure. The assembled GPC-based symmetrical capacitors exhibited a satisfactory capacitive performance in different aqueous electrolytes (H2SO4, KOH and Na2SO4), including high specific capacitance, prominent rate capability, satisfactory energy density and good cycle stability. Meanwhile, we compared the contributions of porosity and the graphitized structure to capacitive performance, and porosity was dominant in determining capacitance and the graphitized skeleton had a positive effect in enhancing the capacitive performance. In addition, we established the relationship between the structure of GPC and electrochemical capacitive performance in different aqueous electrolytes, providing a valuable reference for GPC-based supercapacitors in different practical applications. More importantly, this strategy holds great promise to sustainably convert biowaste to high-added-value capacitive carbons for advanced energy storage applications in the future.

13.
Sci Total Environ ; 848: 157840, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35934026

ABSTRACT

Although the effects of nitrogen deposition on tree water relations are studied extensively, its impact on the relative sensitivities of stomatal and xylem hydraulic conductance to vapor pressure deficit and water potential is still poorly understood. This study investigated the effects of a 7-year N deposition treatment on the responses of leaf water relations and sensitivity of canopy stomatal conductance to vapor pressure deficit (VPD) and water potential, as well as the sensitivity of branch hydraulic conductance to water potential in a dominant tree species (Quercus wutaishanica) and an associated tree species (Acer mono) in a temperate forest. It was found that the N deposition increased stomatal sensitivity to VPD, decreased stomatal sensitivity to water potential, and increased the vulnerability of the hydraulic system to cavitation in both species. The standardized stomatal sensitivity to VPD, however, was not affected by the N deposition, indicating that the stomata maintained the ability to regulate the water balance under nitrogen deposition condition. Although the increased stomatal sensitivity to VPD could compensate the decreased stomatal sensitivity to water potential to some extent, the combined response would increase the percentage loss of hydraulic conductivity (PLC) when 50 % loss in stomatal conductance occurred, particularly in the dominant species Q. wutaishanica. The result indicates that N deposition would increase the risk of hydraulic failure in those species if the soil and/or air becomes drier under future climate change scenarios. The results of the study can have significant implications on the modelling of ecosystem vulnerability to drought under the scenario of atmospheric nitrogen deposition.


Subject(s)
Plant Transpiration , Trees , Ecosystem , Nitrogen , Plant Stomata/physiology , Plant Transpiration/physiology , Soil , Trees/physiology , Water/physiology , Xylem/physiology
14.
J Hazard Mater ; 439: 129603, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35872454

ABSTRACT

Hydroxyl radical (•OH) in fuel combustion gas seriously damages human health. The techniques for simultaneously detecting and scavenging •OH in these gases are limited by poor thermal resistance. To meet this challenge, herein, metal organic frameworks (MOFs) with high thermal stability (80-400 °C) and dual function (•OH detection and elimination) are developed by coordinating Ce ions with terephthalic acid (TA) (Ce-BDC). Due to the reversible conversion between Ce3+ and Ce4+, and the high concentration of Ce3+ on the surface of Ce-BDC MOFs (89.6%), an •OH scavenging efficiency over 90% is realized. Ratiometric fluorescence (I440 nm/I355 nm) detection of •OH with a low detection limit of ∼4 µM is established by adopting Ce ions as an internal standard and TA as an •OH-responsive fluorophore. For real applications, the Ce-BDC MOFs demonstrate excellent •OH detection sensitivity and high •OH scavenging efficiency in gas produced from cigarettes, wood fiber and machine oil. Mouse model results show that the damage caused by •OH in cigarette smoke can be greatly reduced by Ce-BDC MOFs. This work provides a promising strategy for sensitively detecting and efficiently eliminating •OH in fuel combustion gas.


Subject(s)
Cerium , Metal-Organic Frameworks , Animals , Gases , Humans , Limit of Detection , Mice , Phthalic Acids
15.
Adv Mater ; 34(6): e2104164, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34791711

ABSTRACT

Hyperbolic phonon polaritons (HPhPs) sustained in polar van der Waals (vdW) crystals exhibit extraordinary confinement of long-wave electromagnetic fields to the deep subwavelength scale. In stark contrast to uniaxial vdW hyperbolic materials, recently emerged biaxial hyperbolic materials, such as α-MoO3 and α-V2 O5 , offer new degrees of freedom for controlling light in two-dimensions due to their distinctive in-plane hyperbolic dispersions. However, the control and focusing of these in-plane HPhPs remain elusive. Here, a versatile technique is proposed for launching, controlling, and focusing in-plane HPhPs in α-MoO3 with geometrically designed curved gold plasmonic antennas. It is found that the subwavelength manipulation and focusing behaviors are strongly dependent on the curvature of the antenna extremity. This strategy operates effectively in a broadband spectral region. These findings not only provide fundamental insights into the manipulation of light by biaxial hyperbolic crystals at the nanoscale but also open up new opportunities for planar nanophotonic applications.

16.
Front Bioeng Biotechnol ; 9: 777344, 2021.
Article in English | MEDLINE | ID: mdl-34869291

ABSTRACT

Amyloid-ß protein (Aß) is an important biomarker and plays a key role in the early stage of Alzheimer's disease (AD). Here, an ultrasensitive photoelectrochemical (PEC) sensor based on ZnO@polydopamine/Au nanocomposites was constructed for quantitative detection of Aß. In this sensing system, the ZnO nanorod array decorated with PDA films and gold nanoparticles (Au NPs) have excellent visible-light activity. The PDA film was used as a sensitizer for charge separation, and it also was used for antibody binding. Moreover, Au NPs were loaded on the surface of PDA film by in situ deposition, which further improved the charge transfer efficiency and the PEC activity in visible light due to the localized surface plasmon resonance effect of Au NPs. Therefore, in ZnO@polydopamine/Au nanocomposites, a significantly enhanced photocurrent response was obtained on this photoelectrode, which provides a good and reliable signal for early detection of AD. Under the optimized conditions, the PEC immunosensor displayed a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.26 pg/mL. In addition, this PEC immunosensor also presented good selectivity, stability, and reproducibility. This work may provide a promising point-of-care testing method toward advanced PEC immunoassays for AD biomarkers.

17.
Org Biomol Chem ; 19(47): 10348-10358, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34812461

ABSTRACT

A practical synthetic route to construct a variety of 3-benzyl spiro[4,5]trienones was developed via transition-metal Cu/Ag-catalyzed oxidative ipso-annulation of activated alkynes with unactivated toluenes using TBPB as an oxidant under microwave irradiation. This method allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in a single reaction through a sequence of C-H oxidative coupling, ipso-carbocyclization and dearomatization. The advantages of this protocol are its operational simplicity and broad substrate scope, and the ability to afford the desired products in moderate to good yields.

18.
Phys Chem Chem Phys ; 23(34): 18744-18751, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612412

ABSTRACT

The rapid development of electronic devices requires high power storage batteries. However, reported 3D carbon-based materials are semiconductors or metals and are used in Li- or Na-ion batteries with low capacities. Thus, it is of interest to discover whether there is a universal semi-metallic material for use in high performance Li-, Na-, and K-ion batteries. Inspired by the recent synthesis of 3D carbon-based materials, in the research reported here, a 3D regular porous structure (bct-C56) is designed using graphene sheets. The porous carbon-based material has mechanical, dynamic, thermal, and mechanical stabilities. Interestingly, bct-C56 exhibits semi-metallic features with two Dirac nodal surfaces with mirror symmetry, as well as high Fermi velocities, indicating high electron-transport abilities. More excitingly, its theoretical capacities are 743.8, 478.2, and 425.0 mA h g-1, with diffusion barriers of 0.05-0.12, 0.07-0.12, and 0.03-0.05 eV, average OCVs of 0.31, 0.45, and 0.59 V, and volume expansion levels of 1.2%, 0.02%, and 3.1%, in Li-, Na-, and K-ion batteries, respectively. All these excellent characteristics suggest that semi-metallic bct-C56 is a universal anode material for use in metal-ion batteries with a fast charge-discharge rate. In this research, not only was a new material with a Dirac nodal surface feature designed, but it also offers an approach for the creation of high performance and universal metal-ion battery anodes with 3D porous carbon materials.

19.
J Colloid Interface Sci ; 597: 401-408, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33894547

ABSTRACT

Few-atom-thick two-dimensional (2D) molybdenum disulfide (MoS2) monolayers possess numerous crucial applications in energy storage. Usually, the strategy of activating interfacial electron transfer was employed to promote their performance. Herein, we reshape the structure of materials to excite their subinterfacial and interfacial electron transfer for superior metal-ion batteries. As an example, we rationally design and reconfigure the structure of 2D MoS2 and propose a new stable structure, B-MoS2, which has an S-Mo-S sandwich structure with a buckled square lattice. The B-MoS2 monolayer is a promising anode material for magnesium-ion batteries (MgIBs) with a high capacity (921.3 mA h g-1) and a low averaged open circuit voltage (0.154 V). Multiscale underlying mechanisms for the storage of Mg and Li ions in MoS2 are provided. Based on the electronic level, the high capacity is ascribed to the occurrence of interfacial and subinterfacial electron transfer between metal ions and B-MoS2. Based on the atomic level, the insertion-adsorption mechanism or adsorption-insertion mechanism is determined for different ion storage at B-MoS2. The intrinsic metallic property of B-MoS2 and the enhanced electronic conductivity of Mg/B-MoS2 systems as well as low migration barriers (∼0.604 eV) of Mg ions at MoS2 suggest that the B-MoS2 anode has fast charge/discharge rates. This work offers novel concepts (i.e. subinterfacial electron transfer and its activation) for superior energy storage materials, and proposes new multiscale underlying mechanisms for ion storage in the MoS2 family.

20.
Nanoscale ; 13(6): 3493-3499, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33543175

ABSTRACT

Thiol-ene click reactions are important for the construction of carbon-sulfur bonds. The use of visible-light photoredox catalysis for the formation of C-S bonds has attracted much attention. In this work, two-dimensional metal-free graphitic carbon nitride (g-C3N4) nanosheets are prepared through a simple thermal polymerization method and used to catalyze the thiol-ene click reaction under visible light-illumination. This green, atom-economic, and inexpensive approach for the hydrothiolation of alkenes is applicable for structurally different substrates and exhibits superior yields. In air or nitrogen atmosphere, the reaction yield decreases when a hole scavenging agent, CH3OH, is introduced, which indicates that photogenerated holes in the g-C3N4 nanosheets play an important role in the formation of thiyl radicals. The g-C3N4 nanosheets still show a good stability and favorable photocatalytic activity after five cycles of the reaction. Moreover, this approach can be scaled up to the gram-scale synthesis of benzyl(phenethyl)sulfane with a yield up to 93%. Our study suggests a good potential of semiconducting g-C3N4 nanosheets as a metal-free, efficient photocatalyst for various thiol-ene click reactions and even for other organic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...