Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 551: 117592, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832905

ABSTRACT

The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.


Subject(s)
Autoimmune Diseases , Inflammation , Humans , Inflammation/metabolism , C-Reactive Protein/metabolism , Immunity, Innate , Serum Amyloid P-Component
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992874

ABSTRACT

Pyroptosis is one special type of lytic programmed cell death, featured in cell swelling, rupture, secretion of cell contents and remarkable proinflammation effect. In the process of pyroptosis, danger signalling and cellular events are detected by inflammasome, activating caspases and cleaving Gasdermin D (GSDMD), along with the secretion of IL-18 and IL-1ß. Pyroptosis can be divided into canonical pathway and non-canonical pathway, and NLRP3 inflammasome is the most important initiator. Diabetic kidney disease (DKD) is one of the most serious microvascular complications in diabetes. Current evidence reported the stimulatory role of hyperglycaemia-induced cellular stress in renal cell pyroptosis, and different signalling pathways have been shown to regulate pyroptosis initiation. Additionally, the inflammation and cellular injury caused by pyroptosis are tightly implicated in DKD progression, aggravating renal fibrosis, glomerular sclerosis and tubular injury. Some registered hypoglycaemia agents exert suppressive activity in pyroptosis regulation pathway. Latest studies also reported some potential approaches to target the pyroptosis pathway, which effectively inhibits renal cell pyroptosis and alleviates DKD in in vivo or in vitro models. Therefore, comprehensively compiling the information associated with pyroptosis regulation in DKD is the main aim of this review, and we try to provide new insights for researchers to dig out more potential therapies of DKD.


Subject(s)
Diabetic Nephropathies , Kidney , Pyroptosis , Animals , Caspases/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Fibrosis , Humans , Inflammasomes/metabolism , Kidney/metabolism , Kidney/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...