Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2313981121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412129

ABSTRACT

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators. The standing wave pattern is generated through bidirectional pumping of a microresonator, and the scattered light from the microresonator is collected by a short-wave infrared (SWIR) camera. The recorded scattering patterns are wavelength dependent, and the scattered intensity exhibits a linear relation with the circulating power within the microresonator. By modulating the relative phase between the two pump waves, we can control the generated standing waves' movements and characterize the resonator with the SWIR camera. The visualized standing wave enables subwavelength distance measurements of scattering targets with nanometer-level accuracy. This work opens broad avenues for applications in on-chip near-field (bio)sensing, real-time characterization of photonic integrated circuits, and backscattering control in telecom systems.

2.
Opt Express ; 31(25): 41420-41427, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087541

ABSTRACT

Silicon nitride (Si3N4) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si3N4 devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si3N4 (>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si3N4 films (<400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si3N4 structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si3N4 resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si3N4 film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si3N4 film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si3N4 resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm2 with a high-quality factor of 4 × 106. Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.

3.
Opt Express ; 31(5): 8020-8028, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859920

ABSTRACT

The high demand for fabricating microresonators with desired optical properties has led to various techniques to optimize geometries, mode structures, nonlinearities, and dispersion. Depending on applications, the dispersion in such resonators counters their optical nonlinearities and influences the intracavity optical dynamics. In this paper, we demonstrate the use of a machine learning (ML) algorithm as a tool to determine the geometry of microresonators from their dispersion profiles. The training dataset with ∼460 samples is generated by finite element simulations and the model is experimentally verified using integrated silicon nitride microresonators. Two ML algorithms are compared along with suitable hyperparameter tuning, out of which Random Forest yields the best results. The average error on the simulated data is well below 15%.

4.
Phys Rev Lett ; 128(3): 033901, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119896

ABSTRACT

Dissipative Kerr solitons in microresonators have facilitated the development of fully coherent, chip-scale frequency combs. In addition, dark soliton pulses have been observed in microresonators in the normal dispersion regime. Here, we report bound states of mutually trapped dark-bright soliton pairs in a microresonator. The soliton pairs are generated seeding two modes with opposite dispersion but with similar group velocities. One laser operating in the anomalous dispersion regime generates a bright soliton microcomb, while the other laser in the normal dispersion regime creates a dark soliton via Kerr-induced cross-phase modulation with the bright soliton. Numerical simulations agree well with experimental results and reveal a novel mechanism to generate dark soliton pulses. The trapping of dark and bright solitons can lead to light states with the intriguing property of constant output power while spectrally resembling a frequency comb. These results can be of interest for telecommunication systems, frequency comb applications, and ultrafast optics.

5.
Nat Commun ; 11(1): 6384, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33318482

ABSTRACT

Broadband optical frequency combs are extremely versatile tools for precision spectroscopy, ultrafast ranging, as channel generators for telecom networks, and for many other metrology applications. Here, we demonstrate that the optical spectrum of a soliton microcomb generated in a microresonator can be extended by bichromatic pumping: one laser with a wavelength in the anomalous dispersion regime of the microresonator generates a bright soliton microcomb while another laser in the normal dispersion regime both compensates the thermal effect of the microresonator and generates a repetition-rate-synchronized second frequency comb. Numerical simulations agree well with experimental results and reveal that a bright optical pulse from the second pump is passively formed in the normal dispersion regime and trapped by the primary soliton. In addition, we demonstrate that a dispersive wave can be generated and influenced by cross-phase-modulation-mediated repetition-rate synchronization of the two combs. The demonstrated technique provides an alternative way to generate broadband microcombs and enables the selective enhancement of optical power in specific parts of a comb spectrum.

6.
Light Sci Appl ; 9(1): 204, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33353941

ABSTRACT

As light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.

7.
Phys Rev Lett ; 124(22): 223901, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567919

ABSTRACT

The Kerr effect in optical microresonators plays an important role for integrated photonic devices and enables third harmonic generation, four-wave mixing, and the generation of microresonator-based frequency combs. Here we experimentally demonstrate that the Kerr nonlinearity can split ultra-high-Q microresonator resonances for two continuous-wave lasers. The resonance splitting is induced by self- and cross-phase modulation and counterintuitively enables two lasers at different wavelengths to be simultaneously resonant in the same microresonator mode. We develop a pump-probe spectroscopy scheme that allows us to measure power dependent resonance splittings of up to 35 cavity linewidths (corresponding to 52 MHz) at 10 mW of pump power. The required power to split the resonance by one cavity linewidth is only 286 µW. In addition, we demonstrate threefold resonance splitting when taking into account four-wave mixing and two counterpropagating probe lasers. These Kerr splittings are of interest for applications that require two resonances at optically controlled offsets, e.g., for optomechanical coupling to phonon modes, optical memories, and precisely adjustable spectral filters.

8.
Opt Express ; 27(24): 35257-35266, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878698

ABSTRACT

The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Earth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the soliton's repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5×10-9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6×10-15 and 1.9×10-17 are obtained at averaging times of 1 s and 2000 s respectively, indicating that the stability of the generated THz wave is limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.

9.
Phys Rev Lett ; 122(1): 013905, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012656

ABSTRACT

Optically induced breaking of symmetries plays an important role in nonlinear photonics, with applications ranging from optical switching in integrated photonic circuits to soliton generation in ring lasers. In this work we study for the first time the interplay of two types of spontaneous symmetry breaking that can occur simultaneously in optical ring resonators. Specifically we investigate a ring resonator that is synchronously pumped with short pulses of light. In this system we numerically study the interplay and transition between regimes of temporal symmetry breaking (in which pulses in the resonator either run ahead or behind the seed pulses) and polarization symmetry breaking (in which the resonator spontaneously generates elliptically polarized light out of linearly polarized seed pulses). We find ranges of pump parameters for which each symmetry breaking can be independently observed, but also a regime in which a dynamical interplay takes place. Besides the fundamentally interesting physics of the interplay of different types of symmetry breaking, our work contributes to a better understanding of the nonlinear dynamics of optical ring cavities which are of interest for future applications including all-optical logic gates, synchronously pumped optical frequency comb generation, and resonator-based sensor technologies.

10.
Sci Rep ; 8(1): 13875, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30224734

ABSTRACT

Higher repetition-rate optical pulse trains have been desired for various applications such as high-bit-rate optical communication, photonic analogue-to-digital conversion, and multi-photon imaging. Generation of multi GHz and higher repetition-rate optical pulse trains directly from mode-locked oscillators is often challenging. As an alternative, harmonic injection locking can be applied for extra-cavity repetition-rate multiplication (RRM). Here we have investigated the operation conditions and achievable performances of all-fibre, highly tunable harmonic injection locking-based pulse RRM. We show that, with slight tuning of slave laser length, highly tunable RRM is possible from a multiplication factor of 2 to >100. The resulting maximum SMSR is 41 dB when multiplied by a factor of two. We further characterize the noise properties of the multiplied signal in terms of phase noise and relative intensity noise. The resulting absolute rms timing jitter of the multiplied signal is in the range of 20 fs to 60 fs (10 kHz-1MHz) for different multiplication factors. With its high tunability, simple and robust all-fibre implementation, and low excess noise, the demonstrated RRM system may find diverse applications in microwave photonics, optical communications, photonic analogue-to-digital conversion, and clock distribution networks.

11.
Opt Lett ; 43(7): 1447-1450, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29601001

ABSTRACT

We propose and demonstrate a new method which employs time-of-flight detection of femtosecond laser pulses for precise height measurement of large steps. By using time-of-flight detection with fiber-loop optical-microwave phase detectors, precise measurement of large step height is realized. The proposed method shows uncertainties of 15 nm and 6.5 nm at sampling periods of 40 ms and 800 ms, respectively. This method employs only one free-running femtosecond mode-locked laser and requires no scanning of laser repetition rate, making it easier to operate. Precise measurements of 6 µm and 0.5 mm step heights have been demonstrated, which show good functionality of this method for measurement of step heights.

12.
Opt Lett ; 42(20): 4095-4098, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028021

ABSTRACT

We show that the relative intensity noise (RIN) of a mode-locked fiber laser can be suppressed below a -140 dB/Hz level for the entire >20 Hz offset frequency range by a proper combination of intra-cavity and extra-cavity optical bandpass filters. When a 12-nm-bandwidth intra-cavity filter and a 16-nm-bandwidth extra-cavity filter are employed for a polarization-maintaining-nonlinear-amplifying-loop-mirror (PM-NALM)-based Er-fiber laser, the RIN spectrum level is suppressed by ∼30 dB in the low offset frequency range. The resulting integrated rms RIN is only 0.0054% [1 Hz-1 MHz]-to our knowledge, one of the lowest integrated RIN performances for any mode-locked laser reported so far. Besides the simplicity, this double-filtering approach has an additional advantage: unlike active pump-laser feedback methods, it does not have any resonant peaks in the stabilized RIN spectrum. In addition to the RIN suppression, with intra-cavity bandpass filtering, the integrated rms timing jitter is also reduced from 7.29-fs (no-filter) to 2.95-fs (12-nm intra-cavity filter) [10 kHz-1 MHz] in the soliton PM-NALM laser.

13.
Sci Rep ; 7(1): 13305, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042647

ABSTRACT

Ultrahigh-resolution optical strain sensors provide powerful tools in various scientific and engineering fields, ranging from long-baseline interferometers to civil and aerospace industries. Here we demonstrate an ultrahigh-resolution fibre strain sensing method by directly detecting the time-of-flight (TOF) change of the optical pulse train generated from a free-running passively mode-locked laser (MLL) frequency comb. We achieved a local strain resolution of 18 pε/Hz1/2 and 1.9 pε/Hz1/2 at 1 Hz and 3 kHz, respectively, with large dynamic range of >154 dB at 3 kHz. For remote-point sensing at 1-km distance, 80 pε/Hz1/2 (at 1 Hz) and 2.2 pε/Hz1/2 (at 3 kHz) resolution is demonstrated. While attaining both ultrahigh resolution and large dynamic range, the demonstrated method can be readily extended for multiple-point sensing as well by taking advantage of the broad optical comb spectra. These advantages may allow various applications of this sensor in geophysical science, structural health monitoring, and underwater science.

14.
Sci Rep ; 6: 29519, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27389642

ABSTRACT

In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length.

15.
Article in English | MEDLINE | ID: mdl-26529751

ABSTRACT

We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  âˆ¼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs.

16.
Sci Rep ; 5: 11469, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26159113

ABSTRACT

Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.

17.
Opt Express ; 23(7): 8829-36, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968720

ABSTRACT

In this paper, we demonstrate a radio frequency dissemination system via fiber link. An electric phase-shifter is used to active compensate the phase error in the transfer process. Furthermore, an improved error signal extraction component is used to extract the phase error induced via the fiber link. The system can compensate large phase range fluctuation rapidly and precisely. An experiment has been demonstrated with this structure to disseminate a 100 MHz frequency through 100 km. The relative frequency stability is 3 × 10(-14) at 1 s and 3 × 10(-17) at 4000 s. It means this scheme can be used to transfer the most stable microwave sources through fiber link.

18.
Opt Lett ; 40(1): 37-40, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25531602

ABSTRACT

In this letter, we demonstrate frequency-comb-based multiple-access ultrastable frequency dissemination over a 10-km single-mode fiber link. First, we synchronize optical pulse trains from an Er-fiber frequency comb to the remote site by using a simple and robust phase-conjugate stabilization method. The fractional frequency-transfer instability at the remote site is 2.6×10(-14) and 4.9×10(-17) for averaging times of 1 and 10,000 s, respectively. Then, we reproduce the harmonic of the repetition rate from the disseminated optical pulse trains at an arbitrary point along the fiber link to test comb-based multiple-access performance, and demonstrate frequency instability of 4×10(-14) and 7×10(-17) at 1 and 10,000 s averaging time, respectively. The proposed comb-based multiple-access frequency dissemination can easily achieve highly stable wideband microwave extraction along the whole link.

19.
Opt Lett ; 39(22): 6454-7, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25490492

ABSTRACT

In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...