Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
Colloids Surf B Biointerfaces ; 241: 114034, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38878662

ABSTRACT

Liuwei Dihuang (LWDH) is a multi-component and multi-target Chinese herbal compound widely used for treating chronic conditions such as diabetes, diabetic nephropathy, hypertension, osteoporosis, and chronic kidney disease. However, traditional Chinese medicine (TCM) preparations like decoction and pill face limitations, including low active component concentration, limited bioavailability, short half-life, and the need for high dosage, which may increase the burden on liver and kidney functions and reduce clinical efficacy. In this study, LWDH was further purified using D101 macroporous adsorption resin, resulting in a soluble extract with an active component content 53.6 times higher than that of LWDH itself. The freeze-dried LWDH extract was then encapsulated within silk fibroin (SF) microspheres to significantly enhance the sustained release performance of the drug. In a human umbilical vein endothelial cell (HUVEC) model cultured under high glucose conditions, methanol vapor-treated SF/LWDH microspheres demonstrated a decrease in the 24-hour drug release rate from 61.88 % to 34.81 %, augmenting their protective effect on endothelial cells.

2.
Eur J Med Chem ; 274: 116544, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850855

ABSTRACT

Antibiotic resistance is becoming increasingly severe. The development of small molecular antimicrobial peptides is regarded as a promising design strategy for antibiotics. Here, a series of bisphenol derivatives with amphiphilic structures were designed and synthesized as antibacterial agents by imitating the design strategy of antimicrobial peptides. After a series of structural optimizations, lead compound 43 was identified, which exhibited excellent antibacterial activity against Gram-positive bacterial strains (MICs = 0.78-1.56 µg/mL), poor hemolytic activity (HC50 > 200 µg/mL), and low cytotoxicity (CC50 > 100 µg/mL). Further biological evaluation results indicated that 43 exerted antibacterial effects by directly destroying bacterial cell membranes and displayed rapid bactericidal properties (within 0.5-1 h), leading to a very low probability of drug resistance. Moreover, in a murine model of corneal infection, 43 exhibited a strong in vivo antibacterial efficacy. These findings indicate that 43 is a promising candidate compound for the treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents , Benzhydryl Compounds , Gram-Positive Bacteria , Microbial Sensitivity Tests , Phenols , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Phenols/pharmacology , Phenols/chemistry , Phenols/chemical synthesis , Animals , Gram-Positive Bacteria/drug effects , Mice , Structure-Activity Relationship , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/chemical synthesis , Molecular Structure , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Humans , Hemolysis/drug effects , Drug Development
3.
Adv Mater ; : e2404682, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875475

ABSTRACT

Recent breakthroughs in defect-engineered lead-free piezoelectric ceramics have reported remarkable electro-strain values, surpassing the limit of lattice distortion. This has aroused wide concern on bending deformation and the associated underlying mechanism. Herein, via designing lead-free piezoelectric ceramics with varying volatilization characteristics, it is uncovered that the ultrahigh electro-bending deformation is primarily attributed to a large strain gradient induced by unevenly distributed defect dipoles. In 0.5mm-thick Sr/Sn co-doped potassium sodium niobate ceramics featuring volatile K/Na elements, the inherent bipolar electro-strain value can reach 0.3% at 20 kV cm-1 due to the existence of defect dipoles, while the gradient distribution of defect dipole generates significant bending displacement, amplifying apparent electro-strain value to 1.1%. Notably, non-volatile Ba0.99TiO2.99 ceramic with homogeneous defect dipole distribution does not present electro-bending. Of particular interest is that the electro-bending phenomenon can be observed through introducing a defect dipole gradient into barium titanate ceramic. A monolayer ceramic with defect dipole gradient can generate large tip displacement (±1.5 mm) in cantilever structure, demonstrating its promising potential in precise positioning. This study delves into the underlying mechanism driving electro-bending deformation and its impact on the apparent electro-strain measurement in defect-engineered piezoelectric ceramics, providing fresh perspectives for the development of piezoelectric bending actuators. This article is protected by copyright. All rights reserved.

4.
J Magn Reson Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721820

ABSTRACT

BACKGROUND: The angiographic features of moyamoya disease (MMD) and atherosclerosis-associated moyamoya vasculopathy (AS-MMV) are similar, but the etiology and clinical treatment strategies are different. Differentiating MMD from AS-MMV helps to choose the appropriate treatment. PURPOSE: To investigate the feasibility of a nomogram based on high-resolution vessel wall (HR-VWI) MRI features to differentiate MMD from AS-MMV. STUDY TYPE: Retrospective. SUBJECTS: One hundred and two patients with MMD (N = 52) or AS-MMV (N = 50) in the training cohort (9-72 years; 54 females) and 70 patients with MMD (N = 42) or AS-MMV (N = 28) in the validation cohort (7-69 years; 33 females). FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional time-of-flight MR angiography (3D-TOF-MRA), spin echo high-resolution 3D T1-weighted imaging (3D-T1WI), 3D T2-weighted imaging (3D-T2WI), and contrast-enhanced 3D-T1WI. ASSESSMENT: Image assessment was performed by three neuroradiologists (with 10, 15, and 18 years of experience). Demographic characteristic and image features were evaluated and compared. Independent factors of MMD were screened to construct a nomogram model in the training cohort. The validation cohort was used to validated its generality. STATISTICAL TESTS: Interclass correlation coefficient (ICC), kappa, t-test, χ2 test, receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve and concordance index (C-index). A P-value <0.05 was considered statistically significant. RESULTS: Significant differences were observed between MMD and AS-MMV in terms of age, vessel outer diameter, vessel wall thickening pattern, maximum thickness, dot sign, and anterior cerebral artery (ACA) involved. Age, outer diameter, dot sign, and ACA involved were independent factors. The C-index was 0.886 in the training cohort and 0.859 in the validation cohort. The ROC demonstrated high diagnostic efficacy with an AUC of 0.884 in the training cohort and 0.857 in the validation cohort. DATA CONCLUSION: A nomogram model based on age, vessel outer diameter, dot sign and ACA involved may effectively distinguish MMD from AS-MMV with good reliability and accuracy. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

5.
Article in English | MEDLINE | ID: mdl-38806093

ABSTRACT

BACKGROUND: Modern neuroimaging methods have revealed that autistic symptoms are associated with abnormalities in brain morphology, connectivity, and activity patterns. However, the changes in brain microstructure underlying the neurobiological and behavioral deficits of autism remain largely unknown. METHODS: we characterized the associated abnormalities in intracortical myelination pattern by constructing cortical T1-weighted/T2-weighted ratio maps. Voxel-wise comparisons of cortical myelination were conducted between 150 children with autism spectrum disorder (ASD) and 139 typically developing (TD) children. Group differences in cortical T1-weighted/T2-weighted ratio and gray matter volume were then examined for associations with autistic symptoms. A convolutional neural network (CNN) model was also constructed to examine the utility of these regional abnormalities in cortical myelination for ASD diagnosis. RESULTS: Compared to TD children, the ASD group exhibited widespread reductions in cortical myelination within regions related to default mode, salience, and executive control networks such as the inferior frontal gyrus, bilateral insula, left fusiform gyrus, bilateral hippocampus, right calcarine sulcus, bilateral precentral, and left posterior cingulate gyrus. Moreover, greater myelination deficits in most of these regions were associated with more severe autistic symptoms. In addition, children with ASD exhibited reduced myelination in regions with greater gray matter volume, including left insula, left cerebellum_4_5, left posterior cingulate gyrus, and right calcarine sulcus. Notably, the CNN model based on brain regions with abnormal myelination demonstrated high diagnostic efficacy for ASD. CONCLUSIONS: Our findings suggest that microstructural abnormalities in myelination contribute to autistic symptoms and so are potentially promising therapeutic targets as well as biomarkers for ASD diagnosis.

6.
Medicine (Baltimore) ; 103(18): e37943, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701305

ABSTRACT

BACKGROUND: Lumbar disc herniation was regarded as an age-related degenerative disease. Nevertheless, emerging reports highlight a discernible shift, illustrating the prevalence of these conditions among younger individuals. METHODS: This study introduces a novel deep learning methodology tailored for spinal canal segmentation and disease diagnosis, emphasizing image processing techniques that delve into essential image attributes such as gray levels, texture, and statistical structures to refine segmentation accuracy. RESULTS: Analysis reveals a progressive increase in the size of vertebrae and intervertebral discs from the cervical to lumbar regions. Vertebrae, bearing weight and safeguarding the spinal cord and nerves, are interconnected by intervertebral discs, resilient structures that counteract spinal pressure. Experimental findings demonstrate a lack of pronounced anteroposterior bending during flexion and extension, maintaining displacement and rotation angles consistently approximating zero. This consistency maintains uniform anterior and posterior vertebrae heights, coupled with parallel intervertebral disc heights, aligning with theoretical expectations. CONCLUSIONS: Accuracy assessment employs 2 methods: IoU and Dice, and the average accuracy of IoU is 88% and that of Dice is 96.4%. The proposed deep learning-based system showcases promising results in spinal canal segmentation, laying a foundation for precise stenosis diagnosis in computed tomography images. This contributes significantly to advancements in spinal pathology understanding and treatment.


Subject(s)
Deep Learning , Spinal Canal , Spinal Stenosis , Tomography, X-Ray Computed , Humans , Spinal Stenosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Spinal Canal/diagnostic imaging , Male , Lumbar Vertebrae/diagnostic imaging , Female , Middle Aged , Image Processing, Computer-Assisted/methods , Adult , Intervertebral Disc Displacement/diagnostic imaging
7.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731521

ABSTRACT

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Subject(s)
Catalytic Domain , Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Amino Acids/chemistry , Amino Acids/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/chemistry , Pyruvic Acid/metabolism , Pyruvic Acid/chemistry , Mutagenesis, Site-Directed , Molecular Dynamics Simulation
8.
Front Immunol ; 15: 1370800, 2024.
Article in English | MEDLINE | ID: mdl-38799423

ABSTRACT

Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Tumor Microenvironment , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Tumor Microenvironment/drug effects , Molecular Targeted Therapy , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Signal Transduction/drug effects
9.
J Control Release ; 369: 556-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38580136

ABSTRACT

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.


Subject(s)
Mice, Inbred C57BL , Ovalbumin , T-Lymphocytes, Cytotoxic , Animals , Ovalbumin/immunology , Ovalbumin/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Female , Methacrylates/chemistry , Polymers/chemistry , Polymers/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Vaccines/administration & dosage , Vaccines/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Nanovaccines
10.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612689

ABSTRACT

Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1ß). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.


Subject(s)
Extracellular Vesicles , Milk , Animals , Female , Pregnancy , Cattle , Colostrum , Lipopolysaccharides/pharmacology , Caspase 3 , Tumor Necrosis Factor-alpha , Interleukin-6 , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein , Epithelial Cells
11.
Int Med Case Rep J ; 17: 301-309, 2024.
Article in English | MEDLINE | ID: mdl-38618188

ABSTRACT

This study describes a patient with an intradural extramedullary (IDEM) tumor removed entirely using the unilateral biportal endoscopic technique (UBE), achieving satisfactory clinical outcomes. A 60-year-old woman had a diagnosis of meningioma with sensations and motor dysfunction in the lower extremities and perineum and gait disturbances for three years, which has worsened over the last month. Preoperative imaging data showed a sizeable IDEM tumor at the T10 level, significantly compressing the thoracic spinal cord to the right side, with 80% intraspinal encroachment. The IDEM tumor was removed entirely by UBE surgery. To the best of our knowledge, this study may be the first to report the application of UBE techniques for IDEM tumor treatment. In this case, UBE provides a magnified and clear surgical field, greater maneuverability, and a less invasive surgical procedure. The procedure objectives were pathological confirmation, spinal cord decompression, and complete tumor removal; all were met. The patient was satisfied with her dramatically improved clinical symptoms. UBE may be an alternative surgical treatment option for benign IDEM tumors presenting with symptomatic, especially the non-giant lateral and posterior tumors.

12.
Sci Bull (Beijing) ; 69(9): 1188-1191, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503647
13.
Bioresour Technol ; 399: 130616, 2024 May.
Article in English | MEDLINE | ID: mdl-38513924

ABSTRACT

Removing nitrogen and phosphorus from low ratio of chemical oxygen demand to total nitrogen and temperature municipal wastewater stays a challenge. In this study, a pilot-scale anaerobic/aerobic/anoxic sequencing batch reactor (A/O/A-SBR) system first treated 15 m3/d actual municipal wastewater at 8.1-26.4 °C for 224 days. At the temperature of 15.7 °C, total nitrogen in influent and effluent were 45.5 and 10.9 mg/L, and phosphorus in influent and effluent were 3.9 and 0.1 mg/L. 16 s RNA sequencing results showed the relative abundance of Competibacter and Tetrasphaera raised to 1.25 % and 1.52 %. The strategy of excessive, no and normal sludge discharge enriched and balanced the functional bacteria, achieving an endogenous denitrification ratio more than 43.3 %. Sludge reduction and short aerobic time were beneficial to energy saving contrast with a Beijing municipal wastewater treatment. This study has significant implications for the practical application of the AOA-SBR process.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Waste Disposal, Fluid/methods , Anaerobiosis , Nitrogen , Phosphorus , Bioreactors/microbiology , Carbon , China , Denitrification , Nitrification
14.
Bioresour Technol ; 399: 130562, 2024 May.
Article in English | MEDLINE | ID: mdl-38460560

ABSTRACT

The two-sludge anoxic dephosphation (DEPHANOX) process frequently encounters the challenge of elevated effluent ammonia levels in practical applications. In this study, the anaerobic ammonium oxidation (anammox) biofilm was introduced into the DEPHANOX system, transforming it into a three-sludge system, enabling synchronous nitrogen and phosphorus elimination, particularly targeting ammonia. Despite a chemical oxygen demand/total nitrogen ratio of 4.3 ± 0.8 in the actual municipal wastewater and 4.5 h of aeration, the effluent total nitrogen was 13.7 mg/L, lower than the parallel wastewater treatment plant. Additionally, the effluent ammonia reduced to 5.1 ± 2.5 mg/L. Notably, denitrifying phosphorus removal and anammox were coupled in the anoxic zone, yielding 74.5 % nitrogen and 87.8 % phosphorus removal. 16S rRNA gene sequencing identified denitrifying phosphorus-accumulating organisms primarily in floc sludge (Saprospiraceae 7.07 %, Anaerolineaceae 1.95 %, Tetrasphaera 1.57 %), while anammox bacteria inhabited the biofilm (Candidatus Brocadia 4.00 %). This study presents a novel process for efficiently treating municipal wastewater.


Subject(s)
Ammonium Compounds , Water Purification , Wastewater , Sewage/microbiology , Ammonia , Anaerobiosis , Phosphorus , RNA, Ribosomal, 16S/genetics , Denitrification , Bioreactors/microbiology , Oxidation-Reduction , Nitrogen
15.
Sci Rep ; 14(1): 5900, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467716

ABSTRACT

Idiopathic tinnitus is a common and complex disorder with no established cure. The CAABT (Cochleural Alternating Acoustic Beam Therapy CAABT), is a personalized sound therapy designed to target specific tinnitus frequencies and effectively intervene in tinnitus according to clinical tinnitus assessment. This study aimed to compare the effectiveness of the CAABT and Traditional Sound Therapy (TST) in managing chronic idiopathic tinnitus. This was a randomized, double-blind, parallel-group, single-center prospective study. Sixty adult patients with tinnitus were recruited and randomly assigned to the CAABT or TST group in a 1:1 ratio using a computer-generated randomization. The treatment lasted for 12 weeks, and participants underwent assessments using the tinnitus handicap inventory (THI), visual analog scale (VAS), tinnitus loudness measurements, and resting-state functional magnetic resonance imaging (rs-fMRI). Both groups showed significant reductions in THI scores, VAS scores, and tinnitus loudness after treatment. However, CAABT showed superiority to TST in THI Functional (p = 0.018), THI Emotional (p = 0.015), THI Catastrophic (p = 0.022), THI total score (p = 0.005) as well as VAS score (p = 0.022). More interesting, CAABT showed superiority to TST in the changes of THI scores, and VAS scores from baseline. The rs-fMRI results showed significant changes in the precuneus before and after treatment in both groups. Moreover, the CAABT group showed more changes in brain regions compared to the TST. No side effects were observed. These findings suggest that CAABT may be a promising treatment option for chronic idiopathic tinnitus, providing significant improvements in tinnitus-related symptoms and brain activity.Trial registration: ClinicalTrials.gov:NCT02774122.


Subject(s)
Tinnitus , Adult , Humans , Tinnitus/diagnostic imaging , Tinnitus/therapy , Prospective Studies , Sound , Acoustic Stimulation/methods , Acoustics , Treatment Outcome
16.
Bioresour Technol ; 395: 130390, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301944

ABSTRACT

In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.


Subject(s)
Ammonium Compounds , Denitrification , Metal-Organic Frameworks , Oxidation-Reduction , Nitrogen , Hydrogen Peroxide , Anaerobic Ammonia Oxidation , Electrons , Bioreactors/microbiology , Sewage
17.
Biomimetics (Basel) ; 9(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38392125

ABSTRACT

Biomimetics, which draws inspiration from nature, has emerged as a key approach in the development of underwater vehicles. The integration of this approach with computational fluid dynamics (CFD) has further propelled research in this field. CFD, as an effective tool for dynamic analysis, contributes significantly to understanding and resolving complex fluid dynamic problems in underwater vehicles. Biomimetics seeks to harness innovative inspiration from the biological world. Through the imitation of the structure, behavior, and functions of organisms, biomimetics enables the creation of efficient and unique designs. These designs are aimed at enhancing the speed, reliability, and maneuverability of underwater vehicles, as well as reducing drag and noise. CFD technology, which is capable of precisely predicting and simulating fluid flow behaviors, plays a crucial role in optimizing the structural design of underwater vehicles, thereby significantly enhancing their hydrodynamic and kinematic performances. Combining biomimetics and CFD technology introduces a novel approach to underwater vehicle design and unveils broad prospects for research in natural science and engineering applications. Consequently, this paper aims to review the application of CFD technology in the biomimicry of underwater vehicles, with a primary focus on biomimetic propulsion, biomimetic drag reduction, and biomimetic noise reduction. Additionally, it explores the challenges faced in this field and anticipates future advancements.

18.
ACS Appl Mater Interfaces ; 16(3): 4181-4188, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194269

ABSTRACT

Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMg1/3Nb2/3O3-PbTiO3, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.6 eV. Besides, the built-in polarization in GeH nanoflake could promote the separation of photoexcited electron-hole pairs, which lead to 4 times enhancement of the photoconductivity after poling by 200 V. In addition, a gradient regulation of the work function of GeH from 4.94 to 5.21 eV by adjusting the local substrate polarization is demonstrated, which could be used for data storage at the micrometer size by forming p-n homojunctions. This work of constructing such heterointerfaces provides a pathway for applying 2D ambipolar semiconductors in nonvolatile memory devices, photoelectronic devices, and next-generation integrated circuit.

19.
Cell Commun Signal ; 22(1): 49, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233930

ABSTRACT

N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.


Subject(s)
Neoplasms , RNA , Humans , RNA/metabolism , Cytidine/genetics , RNA, Messenger/genetics , Neoplasms/genetics
20.
Nat Nanotechnol ; 19(5): 588-603, 2024 May.
Article in English | MEDLINE | ID: mdl-38172431

ABSTRACT

Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...