Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Ecotoxicol Environ Saf ; 285: 117049, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303637

ABSTRACT

Silica nanoparticles (SiNPs) are widely used in various commercial applications, which inevitably increase the risk of human exposure. It's reported that SiNPs have toxic effects on fertility, however, the specific mechanism of female reproductive toxicity induced by SiNPs remains confusing. In this study, female C57BL/6 mice at the age of 8 weeks were administrated orally with SiNPs at doses of 0, 3, and 10 mg/kg bw. every day in the presence/absence of NAC for eight weeks. The results showed that SiNPs could cause damage to ovaries and reduce the number of ovarian follicles, which led to disruption of sex hormone, altered estrous cyclicity and decreased female fertility. In addition, SiNPs induced oxidative stress in the ovary, as manifested by increased ROS and MDA levels, decreased SOD activity and inhibition of the Nrf2/HO-1 signaling pathway. Further study revealed that exposure to SiNPs resulted in mitochondrial dysfunction and promoted autophagy mediated by PI3K/AKT/mTOR and PINK1/Parkin signaling pathways. Meanwhile, apoptosis is also involved in SiNPs-induced cell death in a cooperative and synchronized manner, as evidenced by an increase in apoptosis-positive cells and activation of the ATM/p53-mediated apoptotic pathway. The supplementation of NAC restored most of the reproductive characteristics of the mice to its physiological range. These results demonstrated that SiNPs could cause ovarian damage via inducing oxidative stress and mitochondrial dysfunction, which led to autophagy and apoptosis, and ultimately resulting in abnormal folliculogenesis and female subfertility.

2.
Anal Chem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023196

ABSTRACT

The presence of nodularin-R (NOD-R) in water has gained considerable attention because of its widespread distribution and high toxicity. In this study, an accurate and rapid visible-light-driven self-powered photoelectrochemical (PEC) biosensor was developed by integrating a portable paper-based electrode with a custom-built miniaturized PEC detection device. The newly designed system successfully achieved on-site detection of NOD-R in real water samples based on PEC technology. First, target recognition triggers the initiation of the hybridization chain reaction to generate double-stranded DNA. The thus-formed double-stranded DNA entrapped methylene blue (MB), and the dye molecules were irradiated with visible light for conversion to leuco-MB in the presence of ascorbic acid. The resulting leuco-MB species significantly amplified the PEC signal output of TiO2-MXene, enabling NOD-R detection. Under optimal conditions, the proposed PEC assay strategy demonstrated NOD-R detection within a concentration range from 20 fg mL-1 to 10 ng mL-1 with a detection limit of 19.6 fg mL-1. In addition, a custom-built miniaturized PEC detection device conveniently integrates the detection component with the light source, enabling the real-time collection of results via a wireless module. This innovative self-powered PEC platform provides significant advancements in smooth and intelligent detection compared to traditional PEC detection devices.

3.
ACS Appl Mater Interfaces ; 16(28): 36935-36941, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957006

ABSTRACT

Heavy-atom-free triplet-triplet annihilation (TTA) upconversion sensitized by a thermally activated delayed fluorescence (TADF) molecule is investigated in a dried gel made of a photo-cross-linked polymer as the solid-state matrix. The upconversion fluorescence quantum yields, ΦUC, of the solid-gel TTA system at different penetration depths are measured accurately based on a developed internal-reference method. It is found that ΦUC is greatest at the surface and then decreases exponentially with increasing depth, influenced by the substrate absorption. The same process is also performed in a TTA solution at different depths, but a completely different result is obtained; there is little difference for ΦUC. To the best of our knowledge, this is the first time the quantum yields at different transmission depths have been mentioned and calculated experimentally. These results illustrate the importance of accurately measuring the quantum yield of solid-phase TTA upconversion and provide a novel way to improve the solid-phase TTA quantum yield by reducing the thickness of the substrate.

4.
J Nutr Biochem ; 133: 109702, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39025456

ABSTRACT

Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.


Subject(s)
Cell Proliferation , Epithelial Cells , Folic Acid , Methylnitronitrosoguanidine , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Folic Acid/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Humans , Male , Rats , Esophagus/drug effects , Esophagus/metabolism , Cell Line , Rats, Sprague-Dawley , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/prevention & control
5.
Environ Int ; 190: 108863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959566

ABSTRACT

Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.


Subject(s)
Air Pollutants , Particulate Matter , Proto-Oncogene Mas , Humans , Particulate Matter/toxicity , Female , Male , Air Pollutants/toxicity , Databases, Factual , Respiratory Tract Diseases/chemically induced , Endocrine System Diseases/chemically induced
6.
J Mass Spectrom ; 59(8): e5069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989730

ABSTRACT

Cinnamomi ramulus (CR) is a common Chinese herbal medicine with a long history. It is often used to treat exogenous wind-cold diseases in clinic, but its chemical compositions remain to be studied. In this study, CR was extracted with 75% ethanol, and UPLC-Q-Orbitrap-MS combined with data post-processing method was used to identify the chemical components in the extract. Through this technology, the components in CR can be separated and accurately identified. A total of 61 compounds were identified, including 14 simple phenylpropanoids, 3 coumarins, 5 lignans, 14 flavonoids, 10 benzoic acids, 8 organic acids, and 7 others. This study confirmed the existence of these compounds in CR and speculated the cleavage pathways of each compound, which enriched the mass spectrometry data and cleavage rules. This study can provide a reference for CR and other research.


Subject(s)
Coumarins , Drugs, Chinese Herbal , Flavonoids , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Coumarins/chemistry , Coumarins/analysis , Flavonoids/analysis , Flavonoids/chemistry , Lignans/analysis , Lignans/chemistry , Mass Spectrometry/methods , Cinnamomum/chemistry , Tandem Mass Spectrometry/methods
7.
Rapid Commun Mass Spectrom ; 38(16): e9833, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38837482

ABSTRACT

RATIONALE: This study developed a method for the rapid classification and identification of the chemical composition of Qingyan dropping pills (QDP) to provide the theoretical basis and data foundation for further in-depth research on the pharmacological substance basis of the formula and the selection of quality control indexes. METHODS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data postprocessing technology were used to analyze the chemical composition of QDP. The fragmentation information on possible characteristic fragments and related neutral losses was summarized based on the literature and was compared with the MS data obtained from the assay, and thus a rapid classification and identification of chemical components in QDP could be achieved. RESULTS: A total of 73 compounds were identified, namely 24 flavonoids, 14 terpenoids, 30 organic acids and their esters, 3 alkaloids, and 2 phenylpropanoids. CONCLUSIONS: In this study, UHPLC-Q-TOF-MS and data postprocessing technology were used to realize the rapid classification and identification of the chemical constituents of QDP, which provided a comprehensive, efficient, and fast qualitative analysis method, a basis for further quality control and safe medication of QDP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Terpenes/analysis , Terpenes/chemistry
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892371

ABSTRACT

The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.


Subject(s)
Arginine , Muscle Fibers, Skeletal , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Mice , Arginine/metabolism , Arginine/pharmacology , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Mice, Inbred C57BL , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Cell Line
9.
Biochem Genet ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886317

ABSTRACT

Ferroptosis is a novel form of membrane-dependent cell death that differs from other cell death modalities such as necrosis, apoptosis, and autophagy. Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system primarily affecting brain and spinal cord neurons. Although the pathogenesis of these two conditions may seem unrelated, recent studies have indicated a connection between ferroptosis and multiple sclerosis. In fact, ferroptosis plays a significant role in the development of MS, as evidenced by the presence of elevated iron levels and iron metabolism abnormalities in the brains, spinal cords, and other neurons of MS patients. These abnormalities disrupt iron homeostasis within cells, leading to the occurrence of ferroptosis. However, there is currently a lack of research on the diagnostic value of ferroptosis-related genes in multiple sclerosis. In this study, we employed bioinformatics methods to identify ferroptosis-related genes (ATM, GSK3B, HMGCR, KLF2, MAPK1, NFE2L1, NRAS, PCBP1, PIK3CA, RPL8, VDAC3) associated with the diagnosis of multiple sclerosis and constructed a diagnostic model. The results demonstrated that the diagnostic model accurately identified the patients' condition. Subsequently, subgroup analysis was performed based on the expression levels of ferroptosis-related genes, dividing patients into high and low expression groups. The results showed differences in immune function and immune cell infiltration between the two groups. Our study not only confirms the correlation between ferroptosis and multiple sclerosis but also demonstrates the diagnostic value of ferroptosis-related genes in the disease. This provides guidance for clinical practice and direction for further mechanistic research.

11.
Nanomaterials (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786799

ABSTRACT

The conversion of solar energy into hydrogen using photocatalysts is a pivotal solution to the ongoing energy and environmental challenges. In this study, inverse opal (IO) ZnIn2S4 (ZIS) with varying pore sizes is synthesized for the first time via a template method. The experimental results indicate that the constructed inverse opal ZnIn2S4 has a unique photonic bandgap, and its slow photon effect can enhance the interaction between light and matter, thereby improving the efficiency of light utilization. ZnIn2S4 with voids of 200 nm (ZIS-200) achieved the highest hydrogen production rate of 14.32 µ mol h-1. The normalized rate with a specific surface area is five times higher than that of the broken structures (B-ZIS), as the red edge of ZIS-200 is coupled with the intrinsic absorption edge of the ZIS. This study not only developed an approach for constructing inverse opal multi-metallic sulfides, but also provides a new strategy for enriching efficient ZnIn2S4-based photocatalysts for hydrogen evolution from water.

12.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667199

ABSTRACT

C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.


Subject(s)
Biosensing Techniques , CSK Tyrosine-Protein Kinase , Fluorescence Resonance Energy Transfer , Humans , Animals , CSK Tyrosine-Protein Kinase/metabolism , Rats , src-Family Kinases/metabolism , Phosphorylation , Membrane Microdomains/metabolism , src Homology Domains
13.
Opt Express ; 32(4): 5851-5861, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439301

ABSTRACT

The Mamyshev oscillator (MO) can generate high-performance pulses. However, due to their non-resonant cavities, they usually are not self-starting, and there is almost no effort to reveal the pulse buildup dynamics of the MO. This paper investigates the dynamic of single pulse (SP) and multi-pulse formation in a self-starting MO. It indicated that both SP self-starting and multi-pulse self-starting can be obtained by adjusting the oscillator parameters. More importantly, increasing pump power could only result in bound state pulses (BSPs) if SP self-starting was formed. With the increase of the pump power, the pulse number in BSPs would increase. However, multiple pulses could not be formed only by increasing the pump power, and the BSPs obtained here underwent SP generated from noise, amplified, and then bounded, which is different from conventional passive mode-locked fiber lasers (CPMLFLs). On the other hand, if multiple pulses were self-initiated, BSPs, pulse bunch, and harmonic mode-locked pulses (HMLPs) could be obtained by adjusting the polarization state and pump power in the cavity. Furthermore, once any of the above states are formed, if the oscillator polarization state and filter interval are unchanged, only increasing the pump power from zero, the original state can still be obtained, which is consistent with the characteristics of the CPMLFLs. These findings will provide new insights into the pulse dynamics of self-starting MO, which will be significant for studying ultrafast laser technology and nonlinear optics.

14.
Langmuir ; 40(12): 6453-6462, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466076

ABSTRACT

The photocatalytic activity of g-C3N4 can be enhanced by improving photoinduced carrier separation and exposing sufficient reactive sites. In this study, we synthesized B-doped porous tubular g-C3N4 (BCNT) using a H3BO3-assisted supramolecular self-template method, wherein H3BO3 helped in B-doping, building a porous structure, and maintaining one-dimensional nanotubes. The tubular structure had an ultrathin tube wall and large aspect ratio, which are conducive to the directional transmission and separation of photogenerated carriers; moreover, the abundant pore structure of the tube wall could fully expose the reactive sites. The introduction of B and the cyano group modulated the bandgap of g-C3N4 and elevated the position of the conduction band, thus enhancing the photoreduction ability and effectively improving the hydrogen evolution performance. Consequently, the hydrogen evolution of BCNT-2 (220.8, 53.2 µmol·h-1) was 1.82 and 1.54 times that of ultrathin g-C3N4 nanosheets (CNN, 121.3, 34.6 µmol·h-1) under simulated sunlight and LED lamp irradiation, respectively. Thus, this work provides in-depth insights into the rational design of one-dimensional g-C3N4 nanotubes with high hydrogen evolution activity under visible irradiation.

15.
Article in English | MEDLINE | ID: mdl-38536635

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection results in significant mortality among newborn piglets, leading to substantial economic setbacks in the pig industry. Short-chain fatty acids (SCFA), the metabolites of intestinal probiotics, play pivotal roles in modulating intestinal function, enhancing the intestinal barrier, and bolstering immune responses through diverse mechanisms. The protective potential of Lactobacillus delbrueckii, Lactobacillus johnsonii, and Lactococcus lactis was first noted when administered to PEDV-infected piglets. Histological evaluations, combined with immunofluorescence studies, indicated that piglets receiving L. lactis displayed less intestinal damage, with diminished epithelial cell necrosis and milder injury levels. Differences in immunofluorescence intensity revealed a significant disparity in antigen content between the L. lactis and PEDV groups, suggesting that L. lactis might suppress PEDV replication, the intestine. We then assessed short-chain fatty acid content through targeted metabolomics, finding that acetate levels markedly varied from other groups. This protective impact was confirmed by administering acetate to PEDV-infected piglets. Data suggested that piglets receiving acetate exhibited resistance to PEDV. Flow cytometry analyses were conducted to evaluate the expression of innate and adaptive immune cells in piglets. Sodium acetate appeared to bolster innate immune defenses against PEDV, marked by elevated NK cell and macrophage counts in mesenteric lymph nodes, along with increased NK cells in the spleen and macrophages in the bloodstream. Acetic acid was also found to enhance the populations of CD8+ IFN-γ T cells in the blood, spleen, and mesenteric lymph, CD4+ IFN-γ T cells in mesenteric lymph nodes and spleen, and CD4+ IL-4+T cells in the bloodstream. Transcriptome analyses were carried out on the jejunal mucosa from piglets with PEDV-induced intestinal damage and from healthy counterparts with intact barriers. Through bioinformatics analysis, we pinpointed 189 significantly upregulated genes and 333 downregulated ones, with the PI3K-AKT, ECM-receptor interaction, and pancreatic secretion pathways being notably enriched. This transcriptomic evidence was further corroborated by western blot and qPCR. Short-chain fatty acids (SCFA) were found to modulate G protein-coupled receptor 41 (GPR41) and 43 (GPR43) in porcine intestinal epithelial cells (IPEC-J2). Post-acetic acid exposure, there was a notable upsurge in the ZO-1 barrier protein expression in IPEC-J2 compared to the unexposed control group (WT), while GPR43 knockdown inversely affected ZO-1 expression. Acetic acid amplified the concentrations of phosphorylated PI3K and AKT pivotal components of the PI3K/AKT pathway. Concurrently, the co-administration of AKT agonist SC79 and PI3K inhibitor LY294002 revealed acetic acid's role in augmenting ZO-1 expression via the P13K/AKT signaling pathway. This study demonstrates that acetic acid produced by Lactobacillus strains regulates intestinal barrier and immune functions to alleviate PEDV infection. These findings provide valuable insights for mitigating the impact of PEDV in the pig industry.

16.
Biotechnol J ; 19(3): e2300654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472089

ABSTRACT

Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rß was increased, and the fluorescence intensity of IL-2Rß was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.


Subject(s)
Interleukin-2 , Killer Cells, Natural , Interleukin-2/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin-2/metabolism , Cytokines/metabolism , Cell Membrane
17.
Microbiol Spectr ; 12(4): e0398823, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38451226

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens contributing to piglet diarrhea, with significant implications for both piglet health and the economic aspects of the livestock industry. SW207 is an isolate of Bacillus halotolerans isolated from the cold- and disease-resistant Leixiang pigs in Northeastern China. We have discovered that SW207 can survive in the pig's gastrointestinal fluid and under conditions of high bile salt concentration, displaying potent antagonistic activity against ETEC. In this study, we established a weaned piglet diarrhea model infected with ETEC to investigate the role of SW207 in preventing diarrhea and improving intestinal health. Results indicate that SW207 upregulates the expression of tight junction proteins, including claudin-1, occludin, and zonula occludens-1, at both the transcriptional and translational levels. Furthermore, SW207 reduces serum endotoxin, D-lactic acid, and various oxidative stress markers while enhancing piglet mechanical barrier function. In terms of immune barrier, SW207 suppressed the activation of the TLR4/MyD88/NF-κB pathway, reducing the expression of various inflammatory factors and upregulating the expression of small intestine mucosal sIgA. Concerning the biological barrier, SW207 significantly reduces the content of E. coli in the intestines and promotes the abundance of beneficial bacteria, thereby mitigating the microbiota imbalance caused by ETEC. In summary, SW207 has the potential to prevent weaned piglet diarrhea caused by ETEC, alleviate intestinal inflammation and epithelial damage, and facilitate potential beneficial changes in the intestinal microbiota. This contributes to elucidating the potential mechanisms of host-microbe interactions in preventing pathogen infections.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC) has consistently been one of the significant pathogens causing mortality in weaned piglets in pig farming. The industry has traditionally relied on antibiotic administration to control ETEC-induced diarrhea. However, the overuse of antibiotics has led to the emergence of drug-resistant zoonotic bacterial pathogens, posing a threat to public health. Therefore, there is an urgent need to identify alternatives to control pathogens and reduce antibiotic usage. In this study, we assessed the protective effect of a novel probiotic in a weaned piglet model infected with ETEC and analyzed its mechanisms both in vivo and in vitro. The study results provide theoretical support and reference for implementing interventions in the gut microbiota to alleviate early weaned piglet diarrhea and improve intestinal health.


Subject(s)
Bacillus , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Animals , Swine , Enterotoxigenic Escherichia coli/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Intestines/microbiology , Intestinal Mucosa/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Swine Diseases/microbiology
18.
J Sep Sci ; 47(3): e2300670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356230

ABSTRACT

Zanthoxylum, as a medicinal and edible herbal medicine, has a long history and complex chemical composition. There are many varieties of Zanthoxylum, and there are differences in composition between varieties. In this study, a rapid classification and identification method for the main components of Zanthoxylum was established using ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. The components of Shandong Zanthoxylum bungeanum, Wudu Zanthoxylum bungeanum, and Zanthoxylum schinifolium were identified by studying the characteristic fragmentations and neutral losses of characteristic components. A total of 48 common components and 24 different components were identified and the fragmentation patterns of the main components, such as flavonoids, alkaloids, and organic acids were summarized. These findings provided a reference for the study of pharmacodynamic substance basis and quality control of different varieties of Zanthoxylum.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Plants, Medicinal , Zanthoxylum , Zanthoxylum/chemistry , Plants, Medicinal/chemistry , Drugs, Chinese Herbal/chemistry , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid
19.
Microbiome ; 12(1): 20, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317217

ABSTRACT

BACKGROUND: The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics. RESULTS: Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8+ CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8+ CTLs to exert antiviral effects. CONCLUSIONS: Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.


Subject(s)
Coronavirus Infections , Gastrointestinal Microbiome , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Swine Diseases/prevention & control , Disease Resistance
20.
Chin Med ; 19(1): 18, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273399

ABSTRACT

BACKGROUND: In Traditional Chinese Medicine (TCM) theory, cold dampness obstruction is one of the common syndromes of osteoarthritis. Therefore, in clinical practice, the main treatment methods are to dispel wind, remove dampness, and dissipate cold, used to treat knee osteoarthritis (KOA). This report describes a mulitercenter clinical study to assess Zhuifeng Tougu Capsule's efficacy and safety in the treatment of patients who are cold dampness obstruction syndrome in KOA, and to provide evidence-based medical for the rational use of Zhuifeng Tougu Capsules in clinical practice. METHODS: This randomized, parallel group controlled, double-blind, double dummy trial will include a total of 215 KOA patients who meet the study criteria. 215 patients underwent 1:1 randomisation, with 107 cases assigned the experimental group (Zhuifeng Tougu Capsules + Glucosamine Sulfate Capsules Simulator) and 108 assigned the control group (Glucosamine Sulfate Capsules + Zhuifeng Tougu Capsules Simulator). After enrolment, patients received 12 weeks of treatment. The main efficacy measure is the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) pain score. Visual analogue scale (VAS) pain score, Self-condition assessment VAS score, WOMAC KOA score, TCM syndrome score and TCM syndrome efficacy, ESR level, CRP level, suprapatellar bursa effusion depth, use of rescue drugs, and safety indicators are secondary efficacy indicators. RESULTS: Compared with before treatment, WOMAC pain score, VAS pain score, Self-condition assessment VAS score, WOMAC KOA score, and TCM syndrome score decreased significantly in both groups (P < 0.01). Also, the experimental group showed significant differences in the above indicators compared to control (P < 0.01). However, after treatment, no significant differences were showed in the ESR level, CRP level, and suprapatellar bursa effusion depth between the two groups (P > 0.05). No any serious adverse effects showed in the experimental group and control group. CONCLUSIONS: Zhuifeng Tougu Capsules can effectively improve knee joint function and significantly alleviate the pain of KOA. TRIAL REGISTRATION: Clinical trial registration was completed with the China Clinical Trial Registration Center for this research protocol (No. ChiCTR2000028750) on January 2, 2020.

SELECTION OF CITATIONS
SEARCH DETAIL