Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(28): 8671-8678, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975929

ABSTRACT

Manipulation of physical properties in multidimensional tunable moiré superlattice systems is a key focus in nanophotonics, especially for interlayer excitons (IXs) in two-dimensional materials. However, the impact of defects on IXs remains unclear. Here, we thoroughly study the optical properties of WS2/WSe2 heterobilayers with varying defect densities. Low-temperature photoluminescence (PL) characterizations reveal that the low-energy IXs are more susceptible to defects compared to the high-energy IXs. The low-energy IXs also show much faster PL quenching rate with temperature, faster peak width broadening rate with laser power, shorter lifetime, and lower circular polarization compared to the low-energy IXs in the region with fewer defects. These effects are attributed to the combined effects of increased electron scattering, exciton-phonon interactions, and nonradiative channels introduced by the defects. Our findings aid in optimizing moiré superlattice structures.

2.
Opt Express ; 32(11): 19746-19756, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859102

ABSTRACT

Metallic nanoparticle-over-mirror (NPOM) represents as a versatile plasmonic configuration for surface enhanced spectroscopy, sensing and light-emitting metasurfaces. However, experimentally identifying the high-order localized surface plasmon modes in NPOM, especially for the best plasmonic material silver, is often hindered by the small scattering cross-section of high-order plasmon modes and the poor reproducibility of the spectra across different NPOMs, resulted from the polyhedral morphology of the colloidal nanoparticles or the rough surface of deposited polycrystalline metals. In this study, we identify the high-order localized surface plasmon modes in silver NPOM by using differential reflection spectroscopy. We achieved reproducible single-particle absorption spectra by constructing uniform NPOM consisting of silver nanospheres, single-crystallized silver microplates, and a self-assembled monolayer of 1,10-decanedithiol. For comparison, silver NPOM created from typical polycrystalline films exhibits significant spectral fluctuations, even when employing template stripping methods to minimize the film roughness. Identifying high-order plasmon modes in the NPOM configuration offers a pathway to construct high-quality plasmonic substrates for applications such as colloidal metasurface, surface-enhanced Raman spectroscopy, fluorescence, or infrared absorption.

3.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408023

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

4.
ACS Nano ; 18(4): 2541-2551, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227821

ABSTRACT

Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.

5.
ACS Sens ; 9(2): 674-688, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38254338

ABSTRACT

Aiming at the bottleneck problem of insufficient selectivity of metal oxide gas sensors, a reliable scheme to improve selectivity is proposed, that is, a laminated sensor structure of a gas-sensitive membrane plus catalytic membrane combined with the temperature modulation technology. It is presented as a highly selective ethanol sensor as an example for verification. The laminated gas sensor is made of Sr@SnO2 as the gas-sensing membrane and ZSM-5 as the catalytic membrane by the microelectro mechanical system. The results indicate that in temperature modulation mode, the Sr@SnO2/ZSM-5-laminated sensor has good resistance gas-sensing response to most different types of gases but only shows a characteristic peak on the time-resistance and temperature-resistance curves of ethanol gas response. By defining and calculating this characteristic peak, the selectivity of ethanol gas response signal is improved. The Sr@SnO2/ZSM-5 sensor also exhibits high sensitivity to ethanol gas at the parts per billion level, fast response/recovery time in seconds, excellent anti-interference, and stability, indicating the reliability and practicality of this highly selective scheme. This scheme is of great significance for the study of high selectivity of a metal oxide gas sensor and promotes its wide application.


Subject(s)
Ethanol , Gases , Reproducibility of Results , Temperature , Oxides
6.
Nat Commun ; 14(1): 7225, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940641

ABSTRACT

Interlayer coupling strength dichotomizes two-dimensional (2D) materials into layered and non-layered types. Traditionally, they can be regarded as atomic layers intrinsically linked via van der Waals (vdW) forces or covalent bonds, oriented orthogonally to their growth plane. In our work, we report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials. Therefore, the lattice constant contraction along this unique orientation can be as much as 7.7%, tantalizingly close to the theoretical prediction of 10.8%. Meanwhile, this feature endows remarkable anisotropy, second harmonic generation enhancement with a staggering susceptibility of 394.3 pm V-1. These findings endow further applications arranged in nonlinear optics, sensors, and catalysis.

7.
Nano Lett ; 23(15): 6966-6972, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498293

ABSTRACT

Coherent multiwave mixing is in demand for optical frequency conversion, imaging, quantum information science, etc., but has rarely been demonstrated in solid-state systems. Here, we observed three- and five-wave mixing (5WM) in a c-axis growth zinc oxide microwire on a Au film with picosecond pulses in the near-infrared region. An output 5WM of 4.7 × 10-7 µW, only 2-3 orders smaller than the three-wave mixing, is achieved when the excitation power is as low as 1.5 mW and the peak power density as weak as ∼107 W/cm2. The excitation power dependence of 5WM agrees well with the perturbation limit under the low intensity but exhibits a strong deviation at a high pumping power. This extraordinary behavior is attributed to the cooperative resonant enhancement effect when pumping in the near-infrared range. Our study offers a potential solid-state platform for on-chip multiwave mixing and quantum nonlinear optics, such as generating many-photon entangled states or the construction of photon-photon quantum logic gates.

8.
Nat Commun ; 14(1): 2532, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37137873

ABSTRACT

Cherenkov radiation (CR) excited by fast charges can serve as on-chip light sources with a nanoscale footprint and broad frequency range. The reversed CR, which usually occurs in media with the negative refractive index or negative group-velocity dispersion, is highly desired because it can effectively separate the radiated light from fast charges thanks to the obtuse radiation angle. However, reversed CR at the mid-infrared remains challenging due to the significant loss of conventional artificial structures. Here we observe mid-infrared analogue polaritonic reversed CR in a natural van der Waals (vdW) material (i.e., α-MoO3), whose hyperbolic phonon polaritons exhibit negative group velocity. Further, the real-space image results of analogue polaritonic reversed CR indicate that the radiation distributions and angles are closely related to the in-plane isofrequency contours of α-MoO3, which can be further tuned in the heterostructures based on α-MoO3. This work demonstrates that natural vdW heterostructures can be used as a promising platform of reversed CR to design on-chip mid-infrared nano-light sources.

9.
Nanomaterials (Basel) ; 13(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903786

ABSTRACT

In this work, we studied the influence of cross-interference effects between VOCs and NO on the performance of SnO2 and Pt-SnO2-based gas sensors. Sensing films were fabricated by screen printing. The results show that the response of the SnO2 sensors to NO under air is higher than that of Pt-SnO2, but the response to VOCs is lower than that of Pt-SnO2. The Pt-SnO2 sensor was significantly more responsive to VOCs in the NO background than in air. In the traditional single-component gas test, the pure SnO2 sensor showed good selectivity to VOCs and NO at 300 °C and 150 °C, respectively. Loading noble metal Pt improved the sensitivity to VOCs at high temperature, but also significantly increased the interference to NO sensitivity at low temperature. The explanation for this phenomenon is that the noble metal Pt can catalyze the reaction between NO and VOCs to generate more O-, which further promotes the adsorption of VOCs. Therefore, selectivity cannot be simply determined by single-component gas testing alone. Mutual interference between mixed gases needs to be taken into account.

10.
Nano Lett ; 23(2): 444-450, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36595223

ABSTRACT

We unambiguously extract the individual decay channels of a coupled plasmon-exciton system by using correlated single-particle absorption and scattering measurements. A remarkable difference in the two channels is present─clear Rabi splitting in the plasmon channel but no Rabi splitting in the exciton channel. Discordance in the absorption and scattering spectra are mainly originated from the distinct contributions of plasmon and exciton channels in the absorption and scattering process. Our findings provide insights into plasmon-exciton interaction in an open cavity and can impact the design of plexcitonic devices for ultrafast nonlinear nanophotonics.

11.
ACS Nano ; 16(12): 19789-19809, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36454684

ABSTRACT

Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.

12.
Small ; 18(41): e2204595, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36089669

ABSTRACT

Ultralow thermal conductivity materials have triggered much interest due to diverse applications in thermal insulation, thermal barrier coating, and especially thermoelectrics. Two dimensional (2D) indium tellurides with ultralow thermal conductivity provide a versatile platform for tailoring the heat transfer, exploring new candidates for thermoelectrics, and achieving miniature, lightweight, and highly integrated devices. Unfortunately, their nanostructure and structure-related heat transfer properties at a 2D scale are much less studied due to difficulties in material fabrication. The ionic character between interlayers and strong covalent bonds in 3D directions impede the anisotropic growth of indium telluride flakes; meanwhile, the low environmental stability and chemical reactivity of tellurium also limit the fabrication of high-quality tellurides, thus hindering the exploration of thermal transport properties. Here, a self-modulation-guided growth strategy to synthesize high-quality 2D In4 Te3 single crystals with ultralow thermal conductivity (0.47 W m-1  K-1 ) is developed. This strategy can also be extended to synthesize a series of highly crystallized metal tellurides, providing excellent candidates for further application in thermoelectrics.

13.
Natl Sci Rev ; 9(6): nwab135, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35795458

ABSTRACT

Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at ∼1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental photoluminescence spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation approach indicates that both the electron and hole of the excitons are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the so-called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insight into the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.

14.
ACS Nano ; 16(8): 12711-12719, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35867404

ABSTRACT

In the picture of molecular cavity optomechanics, surface-enhanced Raman scattering (SERS) can be understood as molecular oscillators parametrically coupled to plasmonic nanocavities supporting an extremely localized optical field. This enables SERS from conventional fingerprint detection toward quantum nanotechnologies associated with, e.g., frequency upconversion and optomechanically induced transparency. Here, we study a phononic cavity optomechanical system consisting of a monolayer MoS2 placed inside a plasmonic nanogap, where the coherent phonon-plasmon interaction involves the collective oscillation from tens of thousands of unit cells of the MoS2 crystal. We observe the selective nonlinear SERS enhancement of the system as determined by the laser-plasmon detuning, suggesting the dynamic backaction modification of the phonon populations. Anomalous superlinear power dependence of a second-order Raman-inactive phonon mode with respect to the first-order phonons is also observed, indicating the distinctive properties of the phononic nanodevice compared with the molecular system. Our results promote the development of robust phononic optomechanical nanocavities to further explore the related quantum correlation and nonlinear effects including parametric instabilities.

15.
Light Sci Appl ; 11(1): 228, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853861

ABSTRACT

Bound states in the continuum (BICs) can confine light with a theoretically infinite Q factor. However, in practical on-chip resonators, scattering loss caused by inevitable fabrication imperfection leads to finite Q factors due to the coupling of BICs with nearby radiative states. Merging multiple BICs can improve the robustness of BICs against fabrication imperfection by improving the Q factors of nearby states over a broad wavevector range. To date, the studies of merging BICs have been limited to fundamental BICs with topological charges ±1. Here we show the unique advantages of higher-order BICs (those with higher-order topological charges) in constructing merging BICs. Merging multiple BICs with a higher-order BIC can further improve the Q factors compared with those involving only fundamental BICs. In addition, higher-order BICs offer great flexibility in realizing steerable off-Γ merging BICs. A higher-order BIC at Γ can split into a few off-Γ fundamental BICs by reducing the system symmetry. The split BICs can then be tuned to merge with another BIC, e.g., an accidental BIC, at an off-Γ point. When the in-plane mirror symmetry is further broken, merging BICs become steerable in the reciprocal space. Merging BICs provide a paradigm to achieve robust ultrahigh-Q resonances, which are important in enhancing nonlinear and quantum effects and improving the performance of optoelectronic devices.

16.
Adv Mater ; 34(20): e2108396, 2022 May.
Article in English | MEDLINE | ID: mdl-35306696

ABSTRACT

Perovskites have engaged significant attention owing to rich species and remarkable physical properties as well as optoelectronic applications. Compared to bulk counterparts, ultrathin perovskites exhibit more available compositions due to the breaking of bulk lattice limitation. Coupled with crystal lattice relaxation and quantum confinement, infinite intriguing properties of ultrathin perovskites deserve to be explored. Developing ultrathin perovskites with alterable composition and structure is a necessity to fully explore this versatile family. Herein, a universal strategy is conceived via constructing oriented solvent microenvironment induced by the interfacial electric field originated from the charge separation between solid and liquid phases, which is conducive to controlling the precursor distribution and makes crystals preferentially nucleate and grow in the preferentially lateral mode. From layered to nonlayered, organic to inorganic, and toxic to low-toxic lead-free perovskite, a full-range synthesis is achieved of ultrathin perovskites. This work opens up opportunities both for ultrathin perovskite exploration through compositional engineering and for device miniaturization in energy conversion applications.

17.
18.
J Chem Phys ; 155(7): 074104, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418921

ABSTRACT

Plasmonic nanostructures are capable of tailoring the emission of a nearby emitter by increasing (or reducing) the brightness, shortening (or prolonging) the lifetime, and shaping the spectrum. Experimental characterization of such coupled plasmon-exciton (plexciton) systems usually relies on the acquisition and comparison of scattering, absorption, or luminescence spectra. However, theoretical accounts of these optical spectra, which are key to distinguishing between the coupling regimes and to standardizing the coupling criteria, often scatters in different frameworks, varying from classical to quantum-mechanical. Therefore, developing a unified and simple formalism that can simultaneously compare all these spectral signatures in different coupling regimes is nontrivial. Here, we use a temporal coupled-mode formalism to reproduce the scattering, absorption, and luminescence spectra of a plexciton system and find that its luminescence reaches a maximum at a critical coupling point, featuring a light-emitting plexciton with intense brightness and ultrafast lifetime. This simple approach provides a unified and phenomenological treatment of these spectra by simply including or excluding an external driving term. It therefore allows for a direct comparison of different spectroscopic signatures from the plexciton system and provides an easy-to-use guidance for the design of broadband light-emitting devices.

19.
Sensors (Basel) ; 21(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204851

ABSTRACT

As the energy crisis becomes worse, hydrogen as a clean energy source is more and more widely used in industrial production and people's daily life. However, there are hidden dangers in hydrogen storage and transportation, because of its flammable and explosive features. Gas detection is the key to solving this problem. High quality sensors with more practical and commercial value must be able to accurately detect target gases in the environment. Emerging porous metal-organic framework (MOF) materials can effectively improve the selectivity of sensors as a result of high surface area and coordinated pore structure. The application of MOFs for surface modification to improve the selectivity and sensitivity of metal oxides sensors to hydrogen has been widely investigated. However, the influence of MOF modified film thickness on the selectivity of hydrogen sensors is seldom studied. Moreover, the mechanism of the selectivity improvement of the sensors with MOF modified film is still unclear. In this paper, we prepared nano-sized ZnO particles by a homogeneous precipitation method. ZnO nanoparticle (NP) gas sensors were prepared by screen printing technology. Then a dense ZIF-8 film was grown on the surface of the gas sensor by hydrothermal synthesis. The morphology, the composition of the elements and the characters of the product were analyzed by X-ray diffraction analysis (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Brunauer-Emmett-Teller (BET) and differential scanning calorimetry (DSC). It is found that the ZIF-8 film grown for 4 h cannot form a dense core-shell structure. The thickness of ZIF-8 reaches 130 nm at 20 h. Through the detection and analysis of hydrogen (1000 ppm), ethanol (100 ppm) and acetone (50 ppm) from 150 °C to 290 °C, it is found that the response of the ZnO@ZIF-8 sensors to hydrogen has been significantly improved, while the response to ethanol and acetone was decreased. By comparing the change of the response coefficient, when the thickness of ZIF-8 is 130 nm, the gas sensor has a significantly improved selectivity to hydrogen at 230 °C. The continuous increase of the thickness tends to inhibit selectivity. The mechanism of selectivity improvement of the sensors with different thickness of the ZIF-8 films is discussed.

20.
Sensors (Basel) ; 21(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201097

ABSTRACT

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 µm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...