Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 343: 123161, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38104760

ABSTRACT

In this study, ceria nanoparticle (CNP) was used as a capping agent to investigate the efficiency and mechanism of simultaneously controlling the release of sediment internal Arsenic (As) and tungsten (W). The results of incubation experiment demonstrated that CNP capping reduced soluble As and W by 81.80% and 97.97% in overlying water, respectively; soluble As and W by 65.64% and 60.13% in pore water, respectively; and labile As and W in sediment by 45.20% and 53.20%, respectively. The main mechanism of CNP controlling sediment internal As and W was through adsorption via ligand exchange and inner-sphere complexation, as determined through adsorption experiments, XPS and FIRT spectra analysis. Besides, CNP also acted as an oxidant, facilitating the oxidation of AsⅢ to AsV and thereby enhancing the adsorption of soluble As. Additionally, sediment As and W fractions experiments demonstrated that the immobilization of As and W with CNP treatment via transforming mobile to stable fractions was another mechanism inhibiting sediment As and W release. The obtained significant positive correlation between soluble As/W and Fe/Mn, labile As/W and Fe/Mn indicated that iron (Fe) and manganese (Mn) oxidation, influenced by CNP, serve as additional mechanisms. Moreover, Fe redox plays a crucial role in controlling internal As and W, while Mn redox plays a more significant role in controlling As compared to W. Meanwhile, CNP capping effectively prevented the release of As and W by reducing the activity of microorganisms that degrade Fe-bound As and W and reduced the release risk of V, Cr, Co, Ni, and Zn from sediments. Overall, this study proved that CNP was a suitable capping agent for simultaneously controlling the release of As and W from sediment.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Arsenic/analysis , Tungsten , Geologic Sediments , Metals, Heavy/analysis , Manganese/analysis , Water , Water Pollutants, Chemical/analysis , Phosphorus
2.
Environ Res ; 231(Pt 1): 116060, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149024

ABSTRACT

In this study, CaO2 was used as a capping material to control the release of Phosphate (P) and tungsten (W) from the sediment due to its oxygen-releasing and oxidative properties. The results revealed significant decreases in SRP and soluble W concentrations after the addition of CaO2. The mechanisms of P and W adsorption by CaO2 were mainly chemisorption and ligand exchange mechanisms. In addition, the results showed significant increases in HCl-P and amorphous and poorly crystalline(oxyhydr)oxides bound W after the addition of CaO2. The highest reduction rates of sediment SRP and soluble W release were 37 and 43%, respectively. Furthermore, CaO2 can promote the redox of iron (Fe) and manganese (Mn). On the other hand, a significant positive correlation was observed between SRP/soluble W and soluble Fe (II) and between SRP/soluble W and soluble Mn, indicating that the effects of CaO2 on Fe and Mn redox play a crucial role in controlling P and W releases from sediments. However, the redox of Fe plays a key role in controlling sediment P and W release. Therefore, CaO2 addition can simultaneously inhibit sediment internal P and W release.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Tungsten , Water Pollutants, Chemical/analysis , Geologic Sediments , Manganese
SELECTION OF CITATIONS
SEARCH DETAIL
...