Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731410

ABSTRACT

Cirsium japonicum Fisch. ex DC. (CF) and Cirsium setosum (Willd.) MB (CS) are commonly used clinically to stop bleeding and eliminate carbuncles. Still, CF is mainly used for treating inflammation, while CS favors hemostasis. Therefore, the present study used UHPLC-MS to analyze the main chemical constituents in CF-CS extract. We optimized the extraction process using single-factor experiments and response surface methodology. Afterward, the hemostatic and anti-inflammatory effects of CF-CS extract were investigated by determining the clotting time in vitro, the bleeding time of rabbit trauma, and the induction of rabbit inflammation using xylene and lipopolysaccharide. The study of hemostatic and anti-inflammatory effects showed that the CF-CS, CF, and CS extract groups could significantly shorten the coagulation time and bleeding time of rabbits compared with the blank group (p < 0.01); compared with the model group, it could dramatically inhibit xylene-induced ear swelling in rabbits and the content of TNF-α, IL-6, and IL-1ß in the serum of rabbits (p < 0.01). The results showed that combined CF and CS synergistically increased efficacy. CF-CS solved the problem of the single hemostatic and anti-inflammatory efficacy of a single drug, which provided a new idea for the research and development of natural hemostatic and anti-inflammatory medicines.


Subject(s)
Anti-Inflammatory Agents , Cirsium , Hemostatics , Plant Extracts , Animals , Rabbits , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cirsium/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Inflammation/drug therapy , Inflammation/pathology , Male
2.
J Colloid Interface Sci ; 668: 484-491, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38691958

ABSTRACT

Suppressing carrier recombination in bulk and facilitating carrier transfer to surface via rational structure design is of great significance to improve solar-to-H2 conversion efficiency. We demonstrate a facile hydrothermal method to synthesize porous SrTiO3 single crystals (SrTiO3-P) with exposed (001) facets by introducing carbon spheres as templates. The obviously increased surface photovoltage and photocurrent response indicate that the interconnected pore walls act as enormous charge transfer "highways", accelerating carrier transport from bulk to surface. Furthermore, the absence of grain boundaries and high crystallinity could also lower the carrier recombination rate. Thus, the SrTiO3-P photocatalyst loaded with Rh/Cr2O3 as cocatalyst exhibits 1.5 times higher overall water splitting activity than that of solid SrTiO3, with gas evolution rate of 19.99 µmol h-1 50 mg-1 for H2 and 11.37 µmol h-1 50 mg-1 for O2. Additionally, SrTiO3-P also shows superior stability without any decay during cycling testing. This work provides a new insight into designing efficient multicomponent photocatalysts with a single-crystal porous structure.

3.
Stroke Vasc Neurol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789134

ABSTRACT

BACKGROUND: The incidence of vascular cognitive impairment (VCI) is high in patients suffering from ischaemic stroke or transient ischaemic attack (TIA) or with vascular risk factors. Effective prevention strategies for VCI remain limited. Anaemia or low haemoglobin was found as an independent risk factor for adverse outcomes after acute stroke. Anaemia or low haemoglobin was possibly associated with an increased risk of poststroke cognitive impairment. Whether supplement of ferrous iron to correct anaemia reduces the risk of VCI and improves adverse outcomes in patients with ischaemic cerebrovascular disease remains uncertain. AIM: We aim to introduce the design and rationale of the safety and efficacy of Ferrous iron on the prevention of Vascular cOgnitive impaiRment in patients with cerebral Infarction or TIA (FAVORITE) trial. DESIGN: FAVORITE is a randomised, placebo-controlled, double-blind, multicentre trial that compares supplement of ferrous iron with placebo for recent minor stroke/TIA patients complicated with mild anaemia or iron deficiency: Ferrous succinate sustained-release tablet 0.2 g (corresponding to 70 mg of elemental iron) once daily after or during breakfast for 12 weeks or placebo with much the same colour, smell and size as ferrous iron once daily during or after breakfast for 12 weeks. All paticipants will be followed within the next year. STUDY OUTCOMES: The primary effective outcome is the incidence of VCI at 3 months after randomisation and the primary safety outcome includes any gastrointestinal adverse event during 3 months. DISCUSSION: The FAVORITE trial will clarify whether supplement of ferrous iron to correct low haemoglobin reduces the risk of VCI in patients with recent ischaemic stroke or TIA complicated with mild anaemia or iron deficiency compared with placebo. TRIAL REGISTRATION NUMBER: NCT03891277.

4.
Gene ; 924: 148558, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740353

ABSTRACT

Recessive genic male sterility (RGMS) provides an effective approach for the commercial exploitation of heterosis, especially in Brassica crops. Although some artificial RGMS mutants have been reported in B. rapa, no causal genes derived from these natural mutants have been identified so far. In this study, a spontaneous RGMS mutant Bcajh97-01A derived from the 'Aijiaohuang' line traced back to the 1980 s was identified. Genetic analysis revealed that the RGMS trait was controlled by a single locus in the Bcajh97-01A/B system. Bulk segregant analysis (BSA) in combination with linkage analysis was employed to delimit the causal gene to an approximate 129 kb interval on chromosome A02. The integrated information of transcriptional levels and the predicted genes in the target region indicated that the Brmmd1 (BraA02g017420) encoding a PHD-containing nuclear protein was the most likely candidate gene. A 374 bp miniature inverted-repeat transposable element (MITE) was inserted into the first exon to prematurely stop the Brmmd1 gene translation, thus blocking the normal expression of this gene at the tetrad stage in the Bcajh97-01A. Additionally, a co-segregating structure variation (SV) marker was developed to rapidly screen the RGMS progenies from Bcajh97-01A/B system. Our findings reveal that BraA02g017420 is the causal gene responsible for the RGMS trait. This study lays a foundation for marker-assisted selection and further molecular mechanism exploration of pollen development in B. rapa.

5.
Int J Biol Macromol ; 271(Pt 1): 132627, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797290

ABSTRACT

Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.

6.
Ther Adv Neurol Disord ; 17: 17562864241253901, 2024.
Article in English | MEDLINE | ID: mdl-38799702

ABSTRACT

Background: Lacunar ischemic stroke (LIS) and deep intracerebral hemorrhage (dICH) are two stroke phenotypes of deep perforator arteriopathy. It is unclear what factors predispose individuals with deep perforator arteriopathy to either ischemic or hemorrhagic events. Objectives: We aimed to investigate risk factors and neuroimaging features of small vessel disease (SVD) associated with LIS versus dICH in a cross-sectional study. Methods: We included patients with clinically presenting, magnetic resonance imaging-confirmed LIS or dICH from two tertiary hospitals between 2010 and 2021. We recorded vascular risk factors and SVD markers, including lacunes, white matter hyperintensities (WMH), perivascular spaces (PVS), and cerebral microbleeds (CMB). Logistic regression modeling was used to determine the association between vascular risk factors, SVD markers, and stroke phenotype. We further created WMH probability maps to compare WMH distribution between LIS and dICH. Results: A total of 834 patients with LIS (mean age 61.7 ± 12.1 years) and 405 with dICH (57.7 ± 13.2 years) were included. Hypertension was equally frequent between LIS and dICH (72.3% versus 74.8%, p = 0.349). Diabetes mellitus, hyperlipidemia, smoking, and prior ischemic stroke were more associated with LIS [odds ratio (OR) (95% confidence interval (CI)), 0.35 (0.25-0.48), 0.32 (0.22-0.44), 0.31 (0.22-0.44), and 0.38 (0.18-0.75)]. Alcohol intake and prior ICH were more associated with dICH [OR (95% CI), 2.34 (1.68-3.28), 2.53 (1.31-4.92)]. Lacunes were more prevalent in LIS [OR (95% CI) 0.23 (0.11-0.43)], while moderate-to-severe basal-ganglia PVS and CMB were more prevalent in dICH [OR (95% CI) 2.63 (1.35-5.27), 4.95 (2.71-9.42)]. WMH burden and spatial distribution did not differ between groups. Conclusion: The microangiopathy underlying LIS and dICH reflects distinct risk profiles and SVD features, hence possibly SVD subtype susceptibility. Prospective studies with careful phenotyping and genetics are needed to clarify the mechanisms underlying this difference.

7.
Alzheimers Dement ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747519

ABSTRACT

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.

8.
Zygote ; 32(2): 170-174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619002

ABSTRACT

Oocytes with excessively large first polar bodies (PB1) often occur in assisted reproductive procedures. Many times these oocytes are discarded without insemination and, as a result, the application of this portion of oocytes has scarcely been reported to date. Few studies have examined large PB1 oocytes in infertile women and have virtually entirely studied genetic variations for large PB1 oocyte abnormalities. Here, we describe an unusual case of a live birth from a remarkably large PB1 oocyte in a frozen embryo transfer (FET) cycle. This is the first instance of a successful live birth resulting from a PB1 oocyte with an extremely large polar body measuring 80 µM × 40 µM in size. The large PB1 oocyte was performed by an early rescue intracytoplasmic sperm injection (r-ICSI) and was formed into a blastocyst on day 5. Following FET, a healthy boy baby weighing 3100 g was finally delivered by caesarean section at 37 weeks and 5 days after conception. Additionally, there were no complications throughout the antenatal period or the perinatal phase of this following full-term delivery. In this study, it is revealed for the first time that a huge PB1 oocyte can be fertilized, resulting in the growth of a blastocyst, a subsequent pregnancy, and a live birth. This new information prompts us to reconsider the use of large PB1 oocytes. More insightful talks should be given attention to prevent the waste of embryos because not all oocytes with aberrant morphology are unavailable.


Subject(s)
Embryo Transfer , Live Birth , Oocytes , Polar Bodies , Sperm Injections, Intracytoplasmic , Humans , Female , Pregnancy , Sperm Injections, Intracytoplasmic/methods , Adult , Oocytes/physiology , Oocytes/cytology , Male , Embryo Transfer/methods , Infant, Newborn , Blastocyst/cytology , Blastocyst/physiology , Cryopreservation
9.
Opt Express ; 32(5): 7307-7317, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439414

ABSTRACT

The Fourier single-pixel imaging technique exhibits great potential for compressive imaging. However, the utilization of low sampling ratio can introduce unwanted ringing artifacts, thereby compromising the fidelity of reconstructed image detail. To address this issue, Vector guided Fourier single-pixel imaging (V-FSI) has been proposed. We analyze the statistical properties in the edge vector field derived from images with low sampling ratio. Based on this information, a tailored sampling map is designed to acquire the significant high-frequency components for image reconstruction. Experimental results demonstrate the remarkable effectiveness of the proposed V-FSI method in enhancing image quality. Notably, V-FSI exhibits exceptional capabilities in perceiving and preserving the details of the objects, particularly for objects characterized by pronounced periodicity and directionality.

10.
J Org Chem ; 89(7): 5170-5180, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38545893

ABSTRACT

A chiral NHC-catalyzed [3 + 3] cycloaddition reaction of 3-aminobenzofurans with isatin-derived enals has been documented, furnishing 3,4'-piperidinoyl spirooxindoles bearing a quaternary stereocenter with good yields and excellent enantioselectivities. Further gram-scale preparation and synthetic transformation of the cycloadducts to δ-amino acid derivative demonstrated good practicality and applicability of this reaction.

11.
ACS Appl Mater Interfaces ; 16(13): 15701-15717, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507687

ABSTRACT

Although topical application of minoxidil is a widely used, FDA-approved therapy for androgenetic alopecia (AGA) treatment, it suffers from low bioavailability, the requirement for frequent long-term use, and side effects. With a similar structure as minoxidil, kopexil and kopyrrol are less toxic and have been commercialized, but show an inferior hair regeneration effect compared to minoxidil. Herein, we developed a hyaluronic acid (HA)-based dissolvable microneedles (MNs) delivery platform integrated with kopexil and kopyrrol coencapsulated nanoliposomes (KK-NLPs) to effectively and safely treat AGA. Facilitated by nanoliposomes and MNs, the encapsulated KK-NLPs performed efficient skin penetration and enhanced cellular internalization into human dermal papilla cells. Furthermore, within the target cells, the codelivered kopexil and kopyrrol show synergistic effects by orchestrating an upregulation in the expression of Ki67, ß-catenin, vascular endothelial growth factor (VEGF), and CD31. These molecular responses collectively foster cell proliferation, migration, and antioxidative effects, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Notably, the KK-NLPs-integrated MNs treatment group exhibits noteworthy enhanced hair regeneration in vivo, with identical or superior therapeutic effects at a much lower dosage than that of minoxidil. These results suggest the great potential of this kopexil and kopyrrol codelivery nanoliposomes-integrated MNs platform for AGA treatment in a safe and efficient way.


Subject(s)
Minoxidil , Vascular Endothelial Growth Factor A , Humans , Minoxidil/pharmacology , Minoxidil/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Alopecia/drug therapy , Alopecia/chemically induced , Alopecia/metabolism , Hair , Hair Follicle , Treatment Outcome
12.
J Agric Food Chem ; 72(8): 4023-4034, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357881

ABSTRACT

In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.


Subject(s)
Biflavonoids , Catechin , Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Cysteine , Tissue Distribution , Biflavonoids/pharmacology , Biflavonoids/chemistry , Catechin/chemistry , Inflammation , Anti-Inflammatory Agents/pharmacology
13.
Appl Environ Microbiol ; 90(3): e0224223, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38358247

ABSTRACT

The extensive accumulation of polyethylene terephthalate (PET) has become a critical environmental issue. PET hydrolases can break down PET into its building blocks. Recently, we identified a glacial PET hydrolase GlacPETase sharing less than 31% amino acid identity with any known PET hydrolases. In this study, the crystal structure of GlacPETase was determined at 1.8 Å resolution, revealing unique structural features including a distinctive N-terminal disulfide bond and a specific salt bridge network. Site-directed mutagenesis demonstrated that the disruption of the N-terminal disulfide bond did not reduce GlacPETase's thermostability or its catalytic activity on PET. However, mutations in the salt bridges resulted in changes in melting temperature ranging from -8°C to +2°C and the activity on PET ranging from 17.5% to 145.5% compared to the wild type. Molecular dynamics simulations revealed that these salt bridges stabilized the GlacPETase's structure by maintaining their surrounding structure. Phylogenetic analysis indicated that GlacPETase represented a distinct branch within PET hydrolases-like proteins, with the salt bridges and disulfide bonds in this branch being relatively conserved. This research contributed to the improvement of our comprehension of the structural mechanisms that dictate the thermostability of PET hydrolases, highlighting the diverse characteristics and adaptability observed within PET hydrolases.IMPORTANCEThe pervasive problem of polyethylene terephthalate (PET) pollution in various terrestrial and marine environments is widely acknowledged and continues to escalate. PET hydrolases, such as GlacPETase in this study, offered a solution for breaking down PET. Its unique origin and less than 31% identity with any known PET hydrolases have driven us to resolve its structure. Here, we report the correlation between its unique structure and biochemical properties, focusing on an N-terminal disulfide bond and specific salt bridges. Through site-directed mutagenesis experiments and molecular dynamics simulations, the roles of the N-terminal disulfide bond and salt bridges were elucidated in GlacPETase. This research enhanced our understanding of the role of salt bridges in the thermostability of PET hydrolases, providing a valuable reference for the future engineering of PET hydrolases.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Phylogeny , Enzyme Stability , Hydrolases/metabolism , Disulfides , Temperature
14.
Chemistry ; 30(26): e202400278, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38406889

ABSTRACT

A novel [3+3] annulation reaction of 2-alkenylindoles with hydrazonyl chlorides in the presence of base for the formation of pyridazino[4,5-b]indoles was developed. This approach provided a convenient and efficient way to synthesize a series of functionalized pyridazino[4,5-b]indoles derivatives. The method exhibited a broad substrate scope and provided the corresponding pyridazino[4,5-b]indoles products with excellent yields.

15.
Adv Mater ; 36(19): e2309972, 2024 May.
Article in English | MEDLINE | ID: mdl-38324725

ABSTRACT

Current approaches to treating inflammatory bowel disease focus on the suppression of overactive immune responses, the removal of reactive intestinal oxygen species, and regulation of the intestinal flora. However, owing to the complex structure of the gastrointestinal tract and the influence of mucus, current small-molecule and biologic-based drugs for treating colitis cannot effectively act at the site of colon inflammation, and as a result, they tend to exhibit low efficacies and toxic side effects. In this study, nanogel-based multistage NO delivery microcapsules are developed to achieve NO release at the inflammation site by targeting the inflammatory tissues using the nanogel. Surprisingly, oral administration of the microcapsules suppresses the growth of pathogenic bacteria and increases the abundance of probiotic bacteria. Metabolomics further show that an increased abundance of intestinal probiotics promotes the production of metabolites, including short-chain fatty acids and indole derivatives, which modulate the intestinal immunity and restore the intestinal barrier via the interleukin-17 and PI3K-Akt signaling pathways. This work reveals that the developed gas therapy strategy based on multistage NO delivery microcapsules modulates the intestinal microbial balance, thereby reducing inflammation and promoting intestinal barrier repair, ultimately providing a new therapeutic approach for the clinical management of colitis.


Subject(s)
Capsules , Colitis , Gastrointestinal Microbiome , Nanogels , Nitric Oxide , Colitis/drug therapy , Animals , Capsules/chemistry , Mice , Nanogels/chemistry , Nitric Oxide/metabolism , Probiotics , Polyethyleneimine/chemistry , Gases/chemistry , Mice, Inbred C57BL , Polyethylene Glycols
16.
Environ Toxicol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366283

ABSTRACT

RNA m6 methyladenosine (m6A) modifications impact tumor biology and immune processes, particularly in hepatocellular malignant tumors. Using a consensus clustering algorithm on 371 hepatocellular carcinoma (HCC) samples, we identified three m6A-modified subtypes and correlated them with positive tumor microenvironment (TME) markers for distinct immune phenotypes. Stratifying patients based on m6A scores revealed a low presentation group with better immune penetration, lower tumor mutation load, and increased expression of immune checkpoint markers like CTLA-4 and PD-1, suggesting enhanced responsiveness to immunization therapy. A machine-learning model of 23 m6A genes was constructed. Single-cell analysis revealed a surprising enrichment of IGFBP3 in astrocytes, prompting the exploration of associated signaling pathways. Experimental verification shows that IGFBP3 is significantly enhanced in normal tissues, while immunohistochemical analysis shows that its expression is lower in tumor tissues, indicating its protective effect in HCC and a good prognosis. Importantly, high IGFBP3 expression is associated with better outcomes in patients receiving immunotherapy. Moreover, cytotoxic T lymphocyte (CTL) experiments have confirmed that high expression of IGFBP3 is associated with stronger T cell-killing ability. In summary, the comprehensive evaluation of m6A modification, immune characteristics, and single-cell analysis in this study not only revealed the TME of HCC but also made significant contributions to the progress of personalized HCC immunotherapy targeting IGFBP3. This study provides a solid theoretical foundation for clinical translation and emphasizes its potential impact on developing effective treatment strategies.

17.
J Biosci Bioeng ; 137(5): 335-343, 2024 May.
Article in English | MEDLINE | ID: mdl-38413318

ABSTRACT

A high-yielding microbial polysaccharide-producing strain, named RM1603, was isolated from rhizosphere soil and identified by morphological and phylogenetic analysis. The extracellular polysaccharides (EPS) were identified by thin-layer chromatography and infrared spectroscopy. The fermentation conditions were optimized by single factor experiments in shake flasks and a 5-L fermentor. The results of morphological and phylogenetic tree analysis showed that RM1603 was a strain of Aureobasidium pullulans. Its microbial polysaccharide was identified as pullulan, and the EPS production capacity reached 33.07 ± 1.03 g L-1 in shake flasks. The fermentation conditions were optimized in a 5-L fermentor, and were found to encompass an initial pH of 6.5, aeration rate of 2 vvm, rotor speed of 600 rpm, and inoculum size of 2 %. Under these conditions, the pullulan yield of RM1603 reached 62.52 ± 0.24 g L-1. Thus, this study contributes RM1603 as a new isolation with high-yielding pullulan and potential application value in biotechnology.


Subject(s)
Ascomycota , Aureobasidium , Glucans , Fermentation , Phylogeny , Ascomycota/genetics , Polysaccharides/chemistry
18.
Ecol Appl ; 34(3): e2944, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379442

ABSTRACT

In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.


Subject(s)
Carbon , Soil , Carbon/analysis , Forests , Edible Grain , China
19.
Neurol Sci ; 45(6): 2615-2623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38216851

ABSTRACT

PURPOSE: To compare the peripapillary retinal nerve fiber layer (pRNFL), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) thickness measurement in early-onset Alzheimer's disease (EOAD) and controls using spectral domain optical coherence tomography (SD-OCT). We also assessed the relationship between SD-OCT measurements and cognitive measures, serum biomarkers for Alzheimer's disease (AD), and cerebral microstructural volume. METHODS: pRNFL, RNFL, and GCC thicknesses were measured in 43 EOAD and 42 controls using SD-OCT. Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were used to assess cognitive status, magnetic resonance imaging (MRI) tool was used to quantify cerebral microstructural volume, and serum biomarkers were quantified from peripheral blood. RESULTS: EOAD patients had thinner pRNFL (P < 0.001), RNFL (P = 0.008), and GCC (P = 0.018) thicknesses compared to controls after adjusting for multiple factors. pRNFL thickness correlated (P = 0.016) with serum t-tau level. Serum Aß42 (P < 0.05) concentration correlated with RNFL thickness. Importantly, occipital lobe volume (P = 0.010) correlated with GCC thicknesses in EOAD patients. CONCLUSION: Our findings suggest that retinal thickness may be useful markers for assessing neurodegenerative process in EOAD.


Subject(s)
Alzheimer Disease , Biomarkers , Brain , Tomography, Optical Coherence , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Female , Biomarkers/blood , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides/blood , tau Proteins/blood , Retina/pathology , Retina/diagnostic imaging , Aged , Retinal Neurons/pathology , Nerve Fibers/pathology , Peptide Fragments/blood
20.
Appl Microbiol Biotechnol ; 108(1): 146, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240862

ABSTRACT

2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.


Subject(s)
Enterobacter aerogenes , Enterobacter aerogenes/genetics , Enterobacter aerogenes/metabolism , Metabolic Engineering/methods , Butylene Glycols/metabolism , Bioreactors , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...