Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Front Neurol ; 15: 1400469, 2024.
Article in English | MEDLINE | ID: mdl-38915803

ABSTRACT

Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.

2.
Int J Biol Sci ; 20(8): 3156-3172, 2024.
Article in English | MEDLINE | ID: mdl-38904009

ABSTRACT

Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Pancreatic Neoplasms , Humans , Ferroptosis/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Animals , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mice , Proteostasis , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Nude
3.
Cell Biol Toxicol ; 40(1): 33, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769285

ABSTRACT

Fumonisin B1 (FB1), a water-soluble mycotoxin released by Fusarium moniliforme Sheld, is widely present in corn and its derivative products, and seriously endangers human life and health. Recent studies have reported that FB1 can lead to pyroptosis, however, the mechanisms by which FB1-induced pyroptosis remain indistinct. In the present study, we aim to investigate the mechanisms of pyroptosis in intestinal porcine epithelial cells (IPEC-J2) and the relationship between FB1-induced endoplasmic reticulum stress (ERS) and pyroptosis. Our experimental results showed that the pyroptosis protein indicators in IPEC-J2 were significantly increased after exposure to FB1. The ERS markers, including glucose-regulated Protein 78 (GRP78), PKR-like ER kinase protein (PERK), and preprotein translocation factor (Sec62) were also significantly increased. Using small interfering RNA silencing of PERK or Sec62, the results demonstrated that upregulation of Sec62 activates the PERK pathway, and activation of the PERK signaling pathway is upstream of FB1-induced pyroptosis. After using the ERS inhibitor 4-PBA reduced the FB1-triggered intestinal injury by the Sec62-PERK pathway. In conclusion, we found that FB1 induced pyroptosis by upregulating Sec62 to activate the PERK pathway, and mild ERS alleviates FB1-triggered damage. It all boils down to one fact, the study provides a new perspective for further, and improving the toxicological mechanism of FB1.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pyroptosis , Signal Transduction , eIF-2 Kinase , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Animals , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Swine , Signal Transduction/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Cell Line , Intestines/drug effects , Intestines/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Fumonisins
4.
Nat Cell Biol ; 26(5): 811-824, 2024 May.
Article in English | MEDLINE | ID: mdl-38671262

ABSTRACT

The mechanisms underlying the dynamic remodelling of cellular membrane phospholipids to prevent phospholipid peroxidation-induced membrane damage and evade ferroptosis, a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation, remain poorly understood. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a critical role in ferroptosis resistance by increasing membrane phospholipid saturation via the Lands cycle, thereby reducing membrane levels of polyunsaturated fatty acids, protecting cells from phospholipid peroxidation-induced membrane damage and inhibiting ferroptosis. Furthermore, the enhanced in vivo tumour-forming capability of tumour cells is closely associated with the upregulation of LPCAT1 and emergence of a ferroptosis-resistant state. Combining LPCAT1 inhibition with a ferroptosis inducer synergistically triggers ferroptosis and suppresses tumour growth. Therefore, our results unveil a plausible role for LPCAT1 in evading ferroptosis and suggest it as a promising target for clinical intervention in human cancer.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase , Ferroptosis , Phospholipids , Humans , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Animals , Phospholipids/metabolism , Cell Line, Tumor , Lipid Peroxidation , Mice, Nude , Cell Membrane/metabolism , Mice , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Cell Proliferation
5.
Clin Cancer Res ; 30(10): 2206-2224, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38470497

ABSTRACT

PURPOSE: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC. EXPERIMENTAL DESIGN: The histopathologic characteristics of clinical MVI+/HCC specimens were analyzed using multiplex immunofluorescence staining. The liver orthotopic xenograft mouse model and mechanistic experiments on human patient-derived HCC cell lines, including coculture modeling, RNA-sequencing, and proteomic analysis, were used to investigate MVI-related genes and mechanisms. RESULTS: IQGAP3 overexpression was correlated significantly with MVI status and reduced survival in HCC. Upregulation of IQGAP3 promoted MVI+-HCC cells to adopt an infiltrative vessel co-optive growth pattern and accessed blood capillaries by inducing detachment of activated hepatic stellate cells (HSC) from the endothelium. Mechanically, IQGAP3 overexpression contributed to HCC vascular invasion via a dual mechanism, in which IQGAP3 induced HSC activation and disruption of the HSC-endothelial interaction via upregulation of multiple cytokines and enhanced the trans-endothelial migration of MVI+-HCC cells by remodeling the cytoskeleton by sustaining GTPase Rac1 activity. Importantly, systemic delivery of IQGAP3-targeting small-interfering RNA nanoparticles disrupted the infiltrative vessel co-optive growth pattern and reduced the MVI of HCC. CONCLUSIONS: Our results revealed a plausible mechanism underlying IQGAP3-mediated microvascular invasion in HCC, and provided a potential target to develop therapeutic strategies to treat HCC with MVI.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Neoplasm Invasiveness , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Animals , Mice , Cell Line, Tumor , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Microvessels/pathology , Microvessels/metabolism , Male , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Xenograft Model Antitumor Assays , Female , Cell Proliferation , Prognosis , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Cell Movement/genetics
6.
Phytomedicine ; 128: 155530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493723

ABSTRACT

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Myeloid Differentiation Factor 88 , NF-kappa B , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Animals , Myeloid Differentiation Factor 88/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Male , Rats, Sprague-Dawley , Brain-Gut Axis/drug effects , Panax notoginseng/chemistry , Rats , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Ischemic Stroke/drug therapy , Brain Ischemia/drug therapy
7.
J Cancer Res Clin Oncol ; 150(3): 123, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472489

ABSTRACT

BACKGROUND: There is currently a limited number of studies on transglutaminase type 1 (TGM1) in tumors. The objective of this study is to perform a comprehensive analysis across various types of cancer to determine the prognostic significance of TGM1 in tumors and investigate its role in the immune environment. METHOD: Pan-cancer and mutational data were retrieved from the TCGA database and analyzed using R (version 3.6.4) and its associated software package. The expression difference and prognosis of TGM1 were examined, along with its correlation with tumor heterogeneity, stemness, mutation landscape, and RNA modification. Additionally, the relationship between TGM1 expression and tumor immunity was investigated using the TIMER method. RESULTS: TGM1 is expressed differently in various tumors and normal samples and is associated with the overall survival and progression-free time of KIRC, ACC, SKCM, LIHC, and STES. In LICH, we found a negative correlation between TGM1 expression and 6 indicators of tumor stemness. The mutation frequencies of BLCA, LIHC, and KIRC were 1.7%, 0.3%, and 0.3% respectively. In BLCA and BRCA, there was a significant correlation between TGM1 expression and the infiltration of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells. CONCLUSION: TGM1 has the potential to serve as both a prognostic marker and a drug target.


Subject(s)
Neoplasms , Humans , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Transglutaminases
8.
Front Pharmacol ; 15: 1294620, 2024.
Article in English | MEDLINE | ID: mdl-38318138

ABSTRACT

Introduction: Diabetic retinopathy (DR) represents a major cause of adult blindness, and early discovery has led to significant increase in the number of patients with DR. The drugs currently used for treatment, such as ranibizumab, mainly focus on the middle and late periods of DR, and thus do not meet the clinical need. Here, the potential mechanisms by which compound Danshen Dripping Pills (CDDP) might protect against early DR were investigated. Methods: Db/db mice were used to establish a DR model. The initial weights and HbA1c levels of the mice were monitored, and retinal pathology was assessed by hematoxylin-eosin (HE) staining. The vascular permeability of the retina and thickness of each retinal layer were measured, and electroretinogram were performed together with fundus fluorescein angiography and optical coherence tomography. The levels of inflammatory factors were examined in retinal tissue, as well as those of intercellular adhesion molecule 1 (ICAM-1), IL-6, and monocyte chemoattractant protein 1 (MCP-1) in the serum using ELISA. Immunohistochemistry was used to evaluate levels of vascular endothelial growth factor (VEGF), B-cell lymphoma 2 (Bcl-2), and Bclassociated X protein (Bax). Retinal cell injury and apoptosis were examined by TdT-mediated dUTP Nick End Labeling (TUNEL) assays. Results: The data showed that CDDP significantly improved cellular disarrangement. Imaging data indicated that CDDP could reduce vascular permeability and the amplitude of oscillatory potentials (OPs), and restore the thickness of the ganglion cell layer. Moreover, CDDP reduced the expression levels of inflammatory factors in both the retina and serum. Conclusion: These findings strongly suggest that CDDP prevents early DR through vascular and neuroprotection.

9.
Cancer Res ; 84(2): 328-343, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37963200

ABSTRACT

The bone is the most common site of distant metastasis of breast cancer, which leads to serious skeletal complications and mortality. Understanding the mechanisms underlying breast cancer bone metastasis would provide potential strategies for the prevention and treatment of breast cancer bone metastasis. In this study, we identified a circular RNA that we named circMMP2(6,7) that was significantly upregulated in bone metastatic breast cancer tissues and correlated with breast cancer-bone metastasis. Upregulation of circMMP2(6,7) dramatically enhanced the metastatic capability of breast cancer cells to the bone via inducing bone metastatic niche formation by disrupting bone homeostasis. Mechanistically, circMMP2(6,7) specifically bound to the promoters of bone-remodeling factors calcium-binding protein S100A4 and carbohydrate-binding protein LGALS3 and formed a complex with ß-catenin and arginine methyltransferase PRMT5, eliciting histone H3R2me1/H3R2me2s-induced transcriptional activation. Treatment with GSK591, a selective PRMT5 inhibitor, effectively inhibited circMMP2(6,7)/ß-catenin/PRMT5 complex-induced breast cancer bone metastasis. These findings reveal a role for circMMP2(6,7) in bone homeostasis disruption and shed light on the mechanisms driving breast cancer bone metastasis. SIGNIFICANCE: Upregulation of bone-remodeling factors S100A4 and LGALS3 mediated by a circMMP2(6,7)/ß-catenin/PRMT5 complex generates a niche that supports breast cancer bone metastasis, identifying PRMT5 as a promising target for treating metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Protein-Arginine N-Methyltransferases , beta Catenin , Female , Humans , beta Catenin/metabolism , Bone Neoplasms/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Galectin 3 , Histones/metabolism , Homeostasis , Protein-Arginine N-Methyltransferases/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism
10.
Neurosci Bull ; 40(4): 466-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148427

ABSTRACT

Microtubule-associated protein Tau is responsible for the stabilization of neuronal microtubules under normal physiological conditions. Much attention has been focused on Tau's contribution to cognition, but little research has explored its role in emotions such as pain, anxiety, and depression. In the current study, we found a significant increase in the levels of p-Tau (Thr231), total Tau, IL-1ß, and brain-derived neurotrophic factor (BDNF) on day 7 after complete Freund's adjuvant (CFA) injection; they were present in the vast majority of neurons in the spinal dorsal horn. Microinjection of Mapt-shRNA recombinant adeno-associated virus into the spinal dorsal cord alleviated CFA-induced inflammatory pain and inhibited CFA-induced IL-1ß and BDNF upregulation. Importantly, Tau overexpression was sufficient to induce hyperalgesia by increasing the expression of IL-1ß and BDNF. Furthermore, the activation of glycogen synthase kinase 3 beta partly contributed to Tau accumulation. These findings suggest that Tau in the dorsal horn could be a promising target for chronic inflammatory pain therapy.


Subject(s)
Brain-Derived Neurotrophic Factor , Chronic Pain , Humans , Brain-Derived Neurotrophic Factor/metabolism , Up-Regulation , Inflammation/metabolism , Hyperalgesia/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism
11.
Protoplasma ; 261(3): 543-551, 2024 May.
Article in English | MEDLINE | ID: mdl-38135806

ABSTRACT

The secretion of IL-8 has been found increasing for different reasons in human bone marrow stromal cells (BMSCs), resulting in poor prognosis in patients with hematologic neoplasms. Hypoxia, a typical feature of numerous hematologic neoplasms microenvironment, often produces hypoxia inducible factor-1α (HIF-1α) which stabilizes and promotes tumor progression. Besides, hypoxic conditions also induce IL-8 production in BMSCs. However, very little is known about the mechanism of increased IL-8 expression in BMSCs caused by hypoxia. In the present study, HIF-1α and IL-8 were found highly expressed in BMSC lines under hypoxic conditions. In addition, the expression and secretion of IL-8 were significantly inhibited by the knockdown of HIF-1α under hypoxic conditions. Furthermore, HIF-1α was found to transcriptionally regulate IL-8 by binding to the region of IL-8 promoter at - 147 to - 140. Collectively, these results demonstrate that IL-8's increase is partly due to the hypoxic microenvironment in hematologic neoplasms, and activation of HIF-1α in BMSCs contributes to the induction and transcriptional regulation of IL-8 expression.


Subject(s)
Hematologic Neoplasms , Mesenchymal Stem Cells , Humans , Cell Hypoxia/genetics , Hematologic Neoplasms/metabolism , Hypoxia/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment
12.
Cell Death Dis ; 14(12): 796, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38052820

ABSTRACT

Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Mice , Humans , Animals , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow , Methyltransferases/genetics , Methyltransferases/metabolism , Mesenchymal Stem Cells/metabolism
14.
Neuroimmunomodulation ; 30(1): 315-324, 2023.
Article in English | MEDLINE | ID: mdl-37899033

ABSTRACT

INTRODUCTION: Inflammatory pain is a significant global clinical challenge that involves both unpleasant sensory and emotional experiences. The treatment of pain is imminent, and we are committed to seeking new analgesics for pain relief. Transcrocetin meglumine salt (TCMS), a saffron metabolite derived from the crocin apocarotenoids, has exhibited the ability to cross the blood-brain barrier and exert neuroprotective effects. In this study, we aimed to investigate whether TCMS could ameliorate complete Freund's adjuvant (CFA)-induced inflammatory pain in mice and elucidate its underlying mechanisms. METHODS: Here, we established an inflammatory pain model in mice by injecting CFA into the left hind paw. Three days later, we administered intraperitoneal injections of TCMS (10 mg/kg) or saline to the animals. We examined mechanical allodynia, thermal hypersensitivity, and anxiety behavior. Furthermore, the activation of glial cells and proinflammatory cytokines in the spinal cord were detected. RESULTS: Our results showed that TCMS significantly reversed the mechanical allodynia and thermal hypersensitivity in the CFA-injected mice. Furthermore, TCMS administration effectively inhibited the activation of microglia and astrocytes in the spinal cord induced by CFA. Additionally, TCMS suppressed the production and release of spinal proinflammatory cytokines, including TNF-α, IL-1ß, and IL-6, in CFA-injected mice. CONCLUSION: Taken together, our findings demonstrate that TCMS holds promise as an innovative analgesic due to its ability to ameliorate inflammatory reactions.


Subject(s)
Cytokines , Hyperalgesia , Mice , Animals , Cytokines/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Freund's Adjuvant/toxicity , Meglumine/adverse effects , Pain/drug therapy , Neuroglia/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Spinal Cord
15.
Mol Cancer Res ; 21(12): 1366-1378, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37698549

ABSTRACT

Acute myeloid leukemia (AML), an aggressive hematopoietic malignancy, exhibits poor prognosis and a high recurrence rate largely because of primary and secondary drug resistance. Elevated serum IL6 levels have been observed in patients with AML and are associated with chemoresistance. Chemoresistant AML cells are highly dependent on oxidative phosphorylation (OXPHOS), and mitochondrial network remodeling is essential for mitochondrial function. However, IL6-mediated regulation of mitochondrial remodeling and its effectiveness as a therapeutic target remain unclear. We aimed to determine the mechanisms through which IL6 facilitates the development of chemoresistance in AML cells. IL6 upregulated mitofusin 1 (MFN1)-mediated mitochondrial fusion, promoted OXPHOS, and induced chemoresistance in AML cells. MFN1 knockdown impaired the effects of IL6 on mitochondrial function and chemoresistance in AML cells. In an MLL::AF9 fusion gene-induced AML mouse model, IL6 reduced chemosensitivity to cytarabine (Ara-C), a commonly used antileukemia drug, accompanied by increased MFN1 expression, mitochondrial fusion, and OXPHOS status. In contrast, anti-IL6 antibodies downregulated MFN1 expression, suppressed mitochondrial fusion and OXPHOS, enhanced the curative effects of Ara-C, and prolonged overall survival. In conclusion, IL6 upregulated MFN1-mediated mitochondrial fusion in AML, which facilitated mitochondrial respiration, in turn, inducing chemoresistance. Thus, targeting IL6 may have therapeutic implications in overcoming IL6-mediated chemoresistance in AML. IMPLICATIONS: IL6 treatment induces MFN1-mediated mitochondrial fusion, promotes OXPHOS, and confers chemoresistance in AML cells. Targeting IL6 regulation in mitochondria is a promising therapeutic strategy to enhance the chemosensitivity of AML.


Subject(s)
Interleukin-6 , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Cytarabine/pharmacology , Drug Resistance, Neoplasm , Interleukin-6/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondrial Dynamics
16.
Pestic Biochem Physiol ; 194: 105498, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532320

ABSTRACT

Glutathione S-transferases (GSTs) are one of the three detoxification enzyme families. The constitutive and inducible overexpression of GSTs genes plays an important role in insecticide resistance. Previous study showed that malathion resistance was polygenic, and elevated GSTs activity was one of the important factor participating in malathion resistance of Bactrocera dorsalis (Hendel), a serious economic pest worldwide. BdGSTd5 overexpression was inducible upon exposure to malathion. However, the involvement of BdGSTd5 in malathion resistance has not been clarified. In this study, we found that BdGSTd5 sequence harbored the conserved region of delta class GSTs, which were overexpressed in malathion resistant strain of B. dorsalis compared to malathion susceptible strain. The highest mRNA expression level of BdGSTd5 was found in 1-day-old adult, and the levels decreased with aging. The dsBdGSTd5 injection effectively silenced (73.4% reduction) the expression of BdGSTd5 and caused significant increase in susceptibility to malathion with a cumulative mortality increasing of 13.5% at 72 h post malathion treatment (p < 0.05). Cytotoxicity assay demonstrated that BdGSTd5 was capable of malathion detoxification. Molecular docking analysis further indicated the interactive potential of BdGSTd5 with malathion and its toxic oxide malaoxon. The recombinant BdGSTd5 exhibited glutathione-conjugating activity toward 1-chloro-2, 4-dinitrobenzene and malathion and malaoxon metabolic capacity with significant reduction (p < 0.05) of the peak areas by 90.0% and 73.1%, respectively. Taken together, the overexpressed BdGSTd5 contributes to malathion metabolism and resistance, which detoxify the malathion in B. dorsalis via directly depleting malathion and malaoxon.


Subject(s)
Insecticides , Tephritidae , Animals , Malathion/toxicity , Insecticides/pharmacology , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Molecular Docking Simulation , Tephritidae/genetics , Insecticide Resistance/genetics
17.
Biomed Pharmacother ; 165: 115154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454595

ABSTRACT

More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.


Subject(s)
COVID-19 , Ginsenosides , Panax , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , COVID-19 Drug Treatment , Epigenesis, Genetic , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use
18.
Hematology ; 28(1): 2220521, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37278609

ABSTRACT

OBJECTIVE: To analyze the effect of granulocyte colony-stimulating factor (G-CSF) on outcomes in patients with acute myeloid leukemia (AML). METHODS: A total of 526 patients with AML in the Haematology Department were enrolled. They were divided into a G-CSF treatment group and a no G-CSF group according to whether G-CSF was administered in the induction chemotherapy period, with 355 cases in the G-CSF group and 171 cases in the no G-CSF group. Cox regression analysis and Kaplan-Meier curve analysis were used to analyze the effect of G-CSF on the first complete remission (CR1) phase and overall survival (OS). In addition, further analysis was performed based on an initial white blood cell count of 50 * 10^9/L. RESULTS: The application of G-CSF significantly shortened the CR1 phase and OS in patients with high leukocytes. CONCLUSIONS: G/GM-CSF should be used with caution in patients with AML, especially those with high leukocytes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Humans , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Leukocytes , Granulocyte Colony-Stimulating Factor/therapeutic use
19.
Mediators Inflamm ; 2023: 6653202, 2023.
Article in English | MEDLINE | ID: mdl-37181809

ABSTRACT

Ferroptosis is a novel form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which causes membrane injury. Under the catalysis of iron ions, cells deficient in glutathione peroxidase (GPX4) cannot preserve the balance in lipid oxidative metabolism, and the buildup of reactive oxygen species on the membrane lipids leads to cell death. An increasing body of evidence suggests that ferroptosis plays a significant role in the development and occurrence of cardiovascular diseases. In this paper, we mainly elaborated on the molecular mechanisms regulating ferroptosis and its impact on cardiovascular disease to lay the groundwork for future studies on the prophylaxis and treatment of this patient population.


Subject(s)
Cardiovascular Diseases , Ferroptosis , Humans , Lipid Peroxidation , Apoptosis , Iron/metabolism
20.
J Agric Food Chem ; 71(22): 8400-8412, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37246803

ABSTRACT

The oriental fruit fly, Bactrocera dorsalis, is a damaging insect pest for many vegetable and fruit crops that has evolved severe chemical insecticide resistance, including organophosphorus, neonicotinoid, pyrethroid, and macrolides. Hence, it is important to elucidate its detoxification mechanism to improve its management and mitigate resource destruction. Glutathione S-transferase (GST) is a critical secondary phase enzyme that plays multiple detoxification functions against xenobiotics. In this study, we identified several BdGSTs by characterizing their potential relationships with five insecticides using inducible and tissue-specific expression pattern analyses. We found that an antenna-abundant BdGSTd8 responded to four different classes of insecticides. Subsequently, our immunohistochemical and immunogold staining analysis further confirmed that BdGSTd8 was primarily located in the antenna. Our investigations also confirmed that BdGSTd8 possesses the capability to enhance cell viability by directly interacting with malathion and chlorpyrifos, which clarified the function of antenna-abundant GST in B. dorsalis. Altogether, these findings enrich our understanding of GST molecular characteristics in B. dorsalis and provide new insights into the detoxification of superfluous xenobiotics in the insect antenna.


Subject(s)
Insecticides , Tephritidae , Animals , Insecticides/pharmacology , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Xenobiotics , Organophosphorus Compounds , Tephritidae/genetics , Tephritidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...