Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 338: 410-427, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28591684

ABSTRACT

The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination.

2.
Huan Jing Ke Xue ; 35(3): 1111-8, 2014 Mar.
Article in Chinese | MEDLINE | ID: mdl-24881404

ABSTRACT

Re-wetting was one of the most common forms of abiotic stresses experienced by soils. To investigate the effects of soil re-wetting rate on phosphorus (P) leaching and the relationship between soil microbial biomass carbon (MBC) and forms of P in leachate; five kinds of neutral purple soils of different fertilizer treatments were analyzed using simulating lab test at re-wetting rate of 0 h, 2 h, 4 h, 24 h and 48 h. The results showed that: (1) The lowest content of MBC appeared at the rate of 2 h during the soil re-wetting process, and the content of MBC increased with the reducing re-wetting rate. (2) Slower re-wetting helped to enhance soil microbial activity and the enhancement effect of organic fertilizer with NPK fertilizer (MNPK) was more significant. (3) The P leaching events of all fertilizer treatments occurred mainly at rapid re-wetting rates such as 0 h, 2 h, 4 h. Slower re-wetting was an important measure to prevent P leaching especially for the soils applied with chemical fertilizers, and it was of great significance in the field management of P. (4) Dissolved organic phosphorus (DOP) was the primary leaching part in leachate, and the variation range of ratio of total dissolved phosphorus (TDP) to total phosphorus (TP) and DOP to TP was 35.42%-85.99% and 29.74%-78.58% respectively. (5) With the reducing of re-wetting rate, significant negative correlation was observed between MBC and TP, TDP as well as DOP in the leachate (P < 0.05). To sum up, it was speculated that the P in soil leachate mainly came from soil microorganisms.


Subject(s)
Fertilizers , Phosphorus/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Environmental Monitoring , Soil Microbiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...