Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1341039, 2024.
Article in English | MEDLINE | ID: mdl-38711992

ABSTRACT

Background: Gastric cancer (GC) is one of the major malignancies threatening human lives and health. Non-SMC condensin II complex subunit D3 (NCAPD3) plays a crucial role in the occurrence of many diseases. However, its role in GC remains unexplored. Materials and Methods: The Cancer Genome Atlas (TCGA) database, clinical samples, and cell lines were used to analyze NCAPD3 expression in GC. NCAPD3 was overexpressed and inhibited by lentiviral vectors and the CRISPR/Cas9 system, respectively. The biological functions of NCAPD3 were investigated in vitro and in vivo. Gene microarray, Gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were performed to establish the potential mechanisms. Results: NCAPD3 was highly expressed in GC and was associated with a poor prognosis. NCAPD3 upregulation significantly promoted the malignant biological behaviors of gastric cancer cell, while NCAPD3 inhibition exerted a opposite effect. NCAPD3 loss can directly inhibit CCND1 and ESR1 expression to downregulate the expression of downstream targets CDK6 and IRS1 and inhibit the proliferation of gastric cancer cells. Moreover, NCAPD3 loss activates IRF7 and DDIT3 to regulate apoptosis in gastric cancer cells. Conclusion: Our study revealed that NCAPD3 silencing attenuates malignant phenotypes of GC and that it is a potential target for GC treatment.

2.
Small Methods ; : e2301468, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295090

ABSTRACT

The exploration of a facile approach to create structurally versatile substances carrying air-stable radicals is highly desired, but still a huge challenge in chemistry and materials science. Herein, a non-contact method to generate air-stable radicals by exposing pyridine/imidazole ring-bearing substances to volatile cyanuric chloride vapor, harnessed as a chemical fuel is reported. This remarkable feat is accomplished through a nucleophilic substitution reaction, wherein an intrinsic electron transfer event transpires spontaneously, originating from the chloride anion (Cl- ) to the cationic nitrogen (N+ ) atom, ultimately giving rise to pyridinium/imidazolium radicals. Impressively, the generated radicals exhibit noteworthy stability in the air over one month owing to the delocalization of the unpaired electron through the extended and highly fused π-conjugated pyridinium/imidazolium-triazine unit. Such an approach is universal to diverse substances, including organic molecules, metal-organic complexes, hydrogels, polymers, and organic cage materials. Capitalizing on this versatile technique, surface radical functionalization can be readily achieved across diverse substrates. Moreover, the generated radical species showcase a myriad of high-performance applications, including mimicking natural peroxidase to accelerate oxidation reactions and achieving high-efficiency near-infrared photothermal conversion and photothermal bacterial inhibition.

3.
Small ; 20(20): e2308908, 2024 May.
Article in English | MEDLINE | ID: mdl-38105418

ABSTRACT

The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (•OH) and superoxide radicals (•O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.

4.
ACS Appl Mater Interfaces ; 15(19): 23671-23678, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37142548

ABSTRACT

Incorporating metal nanoparticles (MNPs) into porous composites with controlled size and spatial distributions is beneficial for a broad range of applications, but it remains a synthetic challenge. Here, we present a method to immobilize a series of highly dispersed MNPs (Pd, Ir, Pt, Rh, and Ru) with controlled size (<2 nm) on hierarchically micro- and mesoporous organic cage supports. Specifically, the metal-ionic surfactant complexes serve as both metal precursors and mesopore-forming agents during self-assembly with a microporous imine cage CC3, resulting in a uniform distribution of metal precursors across the resultant supports. The functional heads on the ionic surfactants as binding sites, together with the nanoconfinement of pores, guide the nucleation and growth of MNPs and prevent their agglomeration after chemical reduction. Moreover, the as-synthesized Pd NPs exhibit remarkable activity and selectivity in the tandem reaction due to the advantages of ultrasmall particle size and improved mass diffusion facilitated by the hierarchical pores.

5.
Pest Manag Sci ; 79(6): 2040-2049, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36693781

ABSTRACT

BACKGROUND: Zeugodacus cucurbitae is an agricultural pest species with robust reproductive capabilities capable of causing extensive damage. The advent of novel male fertility-related pest control strategies has been an area of active entomological research focused on the sterile insect technique (SIT) strategy. RESULTS: RNA-sequencing analyses were conducted using 16 tissue samples from adult male Z. cucurbitae, leading to the identification of 5338 genes that were differentially expressed between the testes and three other analyzed tissue types. Of these genes, 808 exhibited high levels of testis expression. A quantitative polymerase chain reaction (qPCR) approach was used to validate the expression of ten of these genes selected at random, including ZcTSSK1 and ZcTSSK3, which are testis-specific serine/threonine protein kinase (TSSK) genes. Evaluation via a loss-of-function-based knockdown assay showed that the down-regulation of either of these two genes in males was associated with significantly decreased egg hatching rates. In situ hybridization analyses revealed the expression of both of these transcripts in the transformation zone, and significant decreases in Z. cucurbitae sperm numbers were observed following double-stranded RNA treatment. Together, these results suggested that inhibiting ZcTSSK1 and ZcTSSK3 expression was sufficient to alter male fertility in Z. cucurbitae. CONCLUSION: These transcriptional sequencing results provide a foundation for further efforts to clarify the regulators of Z. cucurbitae male fertility. These preliminary analyses of the functions of ZcTSSK family genes as regulators of spermatogenesis underscore their importance in the processes integral to male fecundity and their potential as targets for pest control efforts centered on the genetic manipulation of males. © 2023 Society of Chemical Industry.


Subject(s)
Cucurbitaceae , Tephritidae , Male , Animals , Testis , Seeds , Tephritidae/genetics , Protein Kinases , Fertility/genetics , Threonine , Serine
6.
J Phys Condens Matter ; 34(22)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35259736

ABSTRACT

Since the successful isolation of graphene in 2004, two-dimensional (2D) materials have become one of the focuses in material science owing to their extraordinary physical and chemical properties. In particular, 2D group VA elemental materials exhibit fascinating thickness-dependent band structures. Unfortunately, the well-known instability issue hinders their fundamental researches and practical applications. In this review, we first discuss the degradation mechanism of black phosphorus (BP), a most studied group VA material. Next, we summarize the methods to enhance BP stability with the focus of multifunctional passivation. Finally, we briefly discuss the protection strategies of other emerging group VA materials in recent years. This review provides insight for the degradation mechanism and protecting strategy for 2D group VA elements materials, which will promote their potential applications in electronics, optoelectronics, and biomedicine.

7.
Dalton Trans ; 50(45): 16795-16802, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34766604

ABSTRACT

γ-phase copper(I) iodide (abbreviated to CuI hereafter) with different morphologies is realized through a one-step redox process from I-containing ionic liquid (IL) or poly(ionic liquid)s (PILs) precursors at room temperature. The phase composition, morphology, and electronic states of the synthesized CuI samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The resulting CuI products exhibit three different types of morphologies, namely nanocrystals, with an average size of 0.8 ± 0.2 µm, nanoplates, with a thickness of 35.8 ± 0.9 nm, and nanoflowers, with petals with a thickness of 12.2 ± 0.8 nm. Moreover, the as-synthesized CuI samples exhibit gradually diminishing bandgaps and improved photocatalysis performance for the photodegradation of rhodamine B (RhB) under visible light irradiation as the thickness decreases. XPS measurements confirm that IL/PILs coupled to the CuI surface, resulting in a further charge transfer between Cu and I. These results conclusively prove that IL/PILs serve as both the reducing agents and assemble as orientation templates in the formation of the CuI nanostructures, and also successfully mediate the functional properties of the samples by changing the surface electronic structures.

8.
Insects ; 12(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806814

ABSTRACT

The ATP-binding cassette (ABC) transporter is a protein superfamily that transports specific substrate molecules across lipid membranes in all living species. In insects, ABC transporter is one of the major transmembrane protein families involved in the development of xenobiotic resistance. Here, we report 49 ABC transporter genes divided into eight subfamilies (ABCA-ABCH), including seven ABCAs, seven ABCBs, 10 ABCCs, two ABCDs, one ABCE, three ABCFs, 16 ABCGs, and three ABCHs according to phylogenetic analysis in Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. The expressions level of 49 ABC transporters throughout various developmental stages and within different tissues were evaluated by quantitative transcriptomic analysis, and their expressions in response to three different insecticides were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). These ABC transporter genes were widely expressed at developmental stages but most highly expressed in tissues of the midgut, fat body and Malpighian tube. When challenged by exposure to three insecticides, abamectin, ß-cypermethrin, and dinotefuran, the expressions of ZcABCB7 and ZcABCC2 were significantly up-regulated. ZcABCB1, ZcABCB6, ZcABCB7, ZcABCC2, ZcABCC3, ZcABCC4, ZcABCC5, and ZcABCC7 were significantly up-regulated in the fat body at 24 h after ß-cypermethrin exposure. These data suggest that ZcABCB7 and ZcABCC2 might play key roles in xenobiotic metabolism in Z. cucurbitae. Collectively, these data provide a foundation for further analysis of ABCs in Z. cucurbitae.

9.
Angew Chem Int Ed Engl ; 59(49): 22109-22116, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32748542

ABSTRACT

The capability to significantly shorten the synthetic period of a broad spectrum of open organic materials presents an enticing prospect for materials processing and applications. Herein we discovered 1,2,4-triazolium poly(ionic liquid)s (PILs) could serve as a universal additive to accelerate by at least one order of magnitude the growth rate of representative imine-linked crystalline open organics, including organic cages, covalent organic frameworks (COFs), and macrocycles. This phenomenon results from the active C5-protons in poly(1,2,4-triazolium)s that catalyze the formation of imine bonds, and the simultaneous salting-out effect (induced precipitation by decreasing solubility) that PILs exert on these crystallizing species.

10.
Chem Soc Rev ; 49(6): 1726-1755, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32096815

ABSTRACT

Poly(ionic liquid)s (PILs), as an innovative class of polyelectrolytes, are composed of polymeric backbones with IL species in each repeating unit. The combined merits of the polymers and ILs make them promising materials for composites in materials science. Particularly, the integration of PILs with functional substances (PIL composites) opens up a new dimension in utilizing ionic polymers by offering novel properties and improved functions, which impacts multiple subfields of our chemical society. This review summarizes recent developments of PIL composites with a special emphasis on the preparation techniques that are based on the intrinsic properties of the PILs and the synergistic effects between the PILs and substances of interest for diverse applications.

11.
Sci Data ; 7(1): 45, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32047161

ABSTRACT

The melon fly, Zeugodacus cucurbitae (Coquillett), is an important destructive pest worldwide. Functional studies of the genes associated with development and reproduction during different life stages are limited in Z. cucurbitae. There have yet to be comprehensive transcriptomic resources for genetic and functional genomic studies to identify the molecular mechanisms related to its development and reproduction. In this study, we comprehensively sequenced the transcriptomes of four different developmental stages: egg, larva, pupa, and adults. Using the Illumina RNA-Seq technology, we constructed 52 libraries from 13 stages with four biological replicates in each and generated 435.61 Gb clean reads. We comprehensively characterized the transcriptomes with high-coverage mapping to the reference genome. A total of 13,760 genes were mapped to the reference genome, and another 4481 genes were characterized as new genes. Finally, 14,931 genes (81.85%) were functionally annotated against six annotation databases. This study provides the first comprehensive transcriptome data of all developmental stages of Z. cucurbitae, and will serve as a valuable resource for future genetic and functional studies.


Subject(s)
Gene Expression Profiling , Genome, Insect , Tephritidae/genetics , Transcriptome , Animals , Chromosome Mapping , Life Cycle Stages/genetics , RNA-Seq
12.
Insects ; 10(7)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252564

ABSTRACT

Glutamine synthetase (GS) is a key enzyme in glutamine synthesis and is associated with multiple physiological processes in insects, such as embryonic development, heat shock response, and fecundity regulation. However, little is known about the influence of GS on female fecundity in the oriental fruit fly, Bactrocera dorsalis. Based on the cloning of BdGSs, mitochondrial BdGSm and cytoplasmic BdGSc, we determined their expressions in the tissues of adult B. dorsalis. BdGSm was highly expressed in the fat body, while BdGSc was highly expressed in the head and midgut. Gene silencing by RNA interference against two BdGSs isoforms suppressed target gene expression at the transcriptional level, leading to a reduced ovarian size and lower egg production. The specific inhibitor L-methionine S-sulfoximine suppressed enzyme activity, but only the gene expression of BdGSm was suppressed. A similar phenotype of delayed ovarian development occurred in the inhibitor bioassay. Significantly lower expression of vitellogenin and vitellogenin receptor was observed when GS enzyme activity was suppressed. These data illustrate the effects of two GS genes on adult fecundity by regulating vitellogenin synthesis in different ways.

13.
Chem Sci ; 10(5): 1450-1456, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809362

ABSTRACT

Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal-ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min-1.

14.
Dalton Trans ; 48(1): 65-71, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30500017

ABSTRACT

A new vanadate SrMn2(VO4)2(H2O)2 was synthesized and characterized by single-crystal X-ray analysis. It crystallizes in the monoclinic system with space group C2/m, and exhibits a quasi-one-dimensional (1D) structure. The Mn2+ ions form infinite linear-chains along the b-axis through edge-sharing oxygen atoms and further the linear-chains are connected by VO4 polyhedra into a layer in the ab-plane with Sr2+ ions residing in the space between the layers. Magnetic measurement results show that SrMn2(VO4)2(H2O)2 possesses two spin-canted antiferromagnetic orderings at ∼45 K and ∼7 K. The first ordering at ∼45 K possibly corresponds to a small deviation of spins from a strictly antiparallel arrangement. As the temperature decreases, further spin rotations occur leading to a steadier noncollinear antiferromagnetic phase, leading to the second ordering at ∼7 K. Also, a field-induced transition is observed at a critical field (0.4 T) below ∼7 K.

15.
J Am Chem Soc ; 140(48): 16589-16595, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30407002

ABSTRACT

The visualization of glycosylation states of specific proteins in vivo is of great importance for uncovering their roles in disease development. However, the ubiquity of glycosylation makes probing the glycans on a certain protein as difficult as looking for a needle in a haystack. Herein, we demonstrate a proximity-induced hybridization chain reaction (HCR) strategy for amplified visualization of protein-specific glycosylation. The strategy relies on designing two kinds of DNA probes, glycan conversion probes and protein recognition probes, which are attached to glycans and target proteins, respectively. Upon sequential binding to the targets, the proximity-induced hybridization between two probes occurs, which leads to the structure-switching of protein recognition probes, followed by triggering of HCR assembly. This strategy has been used to visualize tyrosine-protein kinase 7-specific sialic acid in living CEM cells and zebrafish and to monitor its variation during drug treatment. It provides a potential tool for investigating protein-specific glycosylation and researching the relation between dynamic glycans state and disease process.


Subject(s)
DNA Probes/chemistry , DNA/chemistry , Glycoproteins/analysis , Animals , Azides/metabolism , Carbocyanines/chemistry , Cell Line, Tumor , DNA/genetics , DNA Probes/genetics , Fluorescence , Fluorescent Dyes/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation/drug effects , Hexosamines/metabolism , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Nucleic Acid Hybridization , Polysaccharides/chemistry , Tunicamycin/pharmacology , Zebrafish
16.
Anal Chem ; 90(24): 14433-14438, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30444610

ABSTRACT

On cell-membrane surfaces, receptor-protein dimers play fundamental roles in many signaling pathways that are crucial for normal biological processes and cancer development. Efficient and sensitive analysis of receptor dimers in the native environment is highly desirable. Herein, we present a strategy for amplified imaging of receptor dimers in zebrafish and living cells that relies on aptamer recognition and proximity-induced hybridization chain reaction. Taking advantage of specific aptamer recognition and enzyme-free signal amplification, this strategy is successfully applied to the visualization of c-Met-receptor dimers in an HGF-independent or -dependent manner. Therefore, the developed imaging strategy paves the way for further investigation of the dimerization or oligomerization states of cell-surface receptors and their corresponding activation processes in zebrafish and living cells.


Subject(s)
Aptamers, Nucleotide/metabolism , Nucleic Acid Hybridization , Protein Multimerization , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism , Animals , Cell Line, Tumor , Cell Survival , Humans , Molecular Imaging , Protein Structure, Quaternary , Zebrafish
17.
Dalton Trans ; 44(47): 20562-7, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26551057

ABSTRACT

Cu5(VO4)2(OH)4 (turanite) is a layered compound, exhibiting a copper(II) oxide layer in the [0 1 1] plane composed of edge-sharing CuO6 octahedra. Each Cu-O layer is further separated by VO4 tetrahedra. Closer scrutiny found that the copper(II) oxide layer in the compound represents a totally new geometrically-frustrated lattice, a 1/6 depleted triangular lattice. More specifically, the spin network in the [0 1 1] plane is formed by the alternate ranking of triangular and honeycomb strips. Magnetic measurements show that the Cu5(VO4)2(OH)4 behaves as a spin-1/2 ferrimagnet with a Tc = ∼4.5 K. It exhibits an unusual 1/5 magnetization plateau arising from the competition between antiferromagnetic and ferromagnetic interactions caused by the strong frustration. The possible spin-arrangements are also suggested.

18.
Dalton Trans ; 44(35): 15396-9, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26247397

ABSTRACT

A novel copper compound, Cu13(VO4)4(OH)10F4, featuring two types of two-dimensional extended kagome-like and triangular lattices, exhibits long-range antiferromagnetic ordering at ∼3 K, a strong spin-frustration effect with f = 21 and a spin-flop transition at 5 T.

19.
Dalton Trans ; 43(9): 3521-7, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24424388

ABSTRACT

A new polymorph of copper(ii) vanadate, Cu2(VO4)(OH), containing a layered magnetic sublattice, is synthesized by a hydrothermal reaction. It displays a 3D framework based on copper(ii) oxide layers which are further connected by VO4 tetrahedra through corner-sharing {V-O-Cu} bonds in the system. The copper(ii) oxide layer is constructed by the interactions of Cu3(µ3-OH) building units. Magnetic properties are investigated by means of magnetic susceptibility, magnetization and heat capacity measurements. The results indicate a typical long-range canted antiferromagnetic ordering below ∼10 K and weak spin frustration arising from the competition between antiferromagnetic and ferromagnetic interactions inside the irregular Cu3(µ3-OH) triangles.

20.
Dalton Trans ; 41(31): 9532-42, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22760421

ABSTRACT

Four new lead(II) or bismuth(III) selenites and a tellurite, namely, Pb(3)(TeO(3))Cl(4), Pb(3)(SeO(3))(2)Br(2), Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O), Pb(2)Ge(SeO(3))(4) and BiFe(SeO(3))(3), have been prepared and structurally characterized by single crystal X-ray diffraction (XRD) analyses. These compounds exhibit five different types of structures. The structure of Pb(3)(TeO(3))Cl(4) features a three-dimensional (3D) lead(II) chloride network with tellurite anions filling in the 1D tunnels of Pb(4) 4-member rings (MRs) along the c-axis. Pb(3)(SeO(3))(2)Br(2) contains a 3D network composed of lead(II) selenite layers interconnected by bromide anions. Pb(2)Cd(3)(SeO(3))(4)I(2)(H(2)O) is a 3D structure based on 2D cadmium(II) selenite layers which are further connected by 1D lead(II) iodide ladder chains with lattice water molecules located at the 1D tunnels of the structure. Pb(2)Ge(SeO(3))(4) features a 3D framework constructed by the alternate arrangement of lead(II) selenite layers and germanium(iv) selenite layers in the [100] direction. The structure of BiFe(SeO(3))(3) is built on the 3D anionic framework of ion(III) selenite with the bismuth(III) ions located at its Fe(6)Se(6) 12-MR tunnels. Pb(3)(TeO(3))Cl(4) (Pna2(1)) is polar and BiFe(SeO(3))(3) (P2(1)2(1)2(1)) is noncentrosymmetric. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate that BiFe(SeO(3))(3) exhibits a weak SHG efficiency of about 0.2 × KH(2)PO(4) (KDP). Magnetic property measurements for BiFe(SeO(3))(3) show a dominant antiferromagnetic interaction with weak spin-canting at low temperatures. IR, UV-vis and thermogravimetric, as well as electronic structure calculations were also performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...