Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Food Res Int ; 188: 114454, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823832

ABSTRACT

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Subject(s)
Cysteine , Gas Chromatography-Mass Spectrometry , Glucose , Maillard Reaction , Volatile Organic Compounds , Cysteine/chemistry , Glucose/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Density Functional Theory , Hot Temperature
2.
Food Chem ; 454: 139751, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38820639

ABSTRACT

Decanal is one of the main products of lipid oxidation. It has been shown that decanal can oxidize to form volatiles with shorter carbon chains during heating, but the mechanism is still unclear. In this study, volatile compounds formed in the decanal thermal oxidation were verified using thermal-desorption cryo-trapping combined with GC-MS. A total of 32 volatile compounds were identified. The oxidation mechanism of decanal was studied by applying density functional theory. Results revealed that the carbonyl carbon atom was the thermal oxidation site of decanal and two pathways of peroxide oxidation were determined: the ortho­carbon and the meta­carbon oxidation. The ortho­carbon oxidation pathway is superior to the occurrence of the meta­carbon oxidation pathway. The oxidative mechanism of decanal was finally summarized as the peroxide oxidation based on radical attack on the carbonyl carbon, which would provide a theoretical basis for exploring the oxidation mechanism of other saturated aldehydes.

3.
Food Chem ; 451: 139493, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703728

ABSTRACT

Iron chelating peptides have been widely utilized as iron supplements due to their excellent absorption capacity, However, the high cost and cumbersome manufacturing process of these peptides significantly limit their industrial application. In this study, fermentation was used for the first time to prepare iron chelating peptides. Bacillus altitudinis 3*1-3 was selected as the most suitable strain from 50 strains. The hydrolysates of fermented scallop skirts showed excellent iron-chelating capacity (9.39 mg/g). Aspartic acid, glutamic acid, and histidine are crucial for the binding of peptides to ferrous ions. The heptapeptide (FEDPEFE) forms six binding bonds with ferrous irons. Compared with ferrous sulfate, peptide-ferrous chelate showed more stability in salt solution and simulated gastrointestinal juice (p < 0.05). Furthermore, the fermentation method could save >50% of the cost compared with the enzymatic method. The results can provide a theoretical basis for the preparation of ferrous-chelated peptides using the fermentation method.


Subject(s)
Bacillus , Fermentation , Iron Chelating Agents , Pectinidae , Peptides , Animals , Pectinidae/chemistry , Pectinidae/metabolism , Pectinidae/microbiology , Peptides/chemistry , Peptides/metabolism , Iron Chelating Agents/chemistry , Iron Chelating Agents/metabolism , Bacillus/metabolism , Bacillus/chemistry , Iron/chemistry , Iron/metabolism
4.
Food Chem ; 450: 139472, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38705103

ABSTRACT

In this study, the electrospinning technique was used to co-encapsulate Quercetin (Qu) and Lactiplantibacillus plantarum 1-24-LJ in PVA-based nanofibers, and the effect of bioactive films on fish preservation was evaluated at the first time. The findings indicated that both Lpb. plantarum 1-24-LJ and Qu were successfully in the fibers, and co-loaded fibers considerably outperformed single-loaded fiber in terms of bacterial survival and antioxidant activity. Following fish preservation using the loaded fibers, significant reductions were observed in TVB-N, TBARS, and microbial complexity compared to the control group. Additionally, the co-loaded fibers more effectively reduced the counts of H2S-producing bacteria and Pseudomonas. In the future, fibers with both active substances and LAB hold promise as a novel approach for fish preservation.


Subject(s)
Carps , Food Preservation , Quercetin , Quercetin/pharmacology , Quercetin/chemistry , Animals , Carps/microbiology , Food Preservation/methods , Food Preservation/instrumentation , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/metabolism , Bacteria/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology
5.
Sci Rep ; 14(1): 11290, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760385

ABSTRACT

Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Polyethylene Glycols , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Polyethylene Glycols/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Transcriptome , Gene Expression Profiling
6.
Foods ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672935

ABSTRACT

Strong-flavor Daqu, as a fermentation agent, plays a significant role in shaping the quality of strong-flavor baijius, and fungal species in Daqu are important factors affecting the quality of Daqu. Therefore, we selected strong-flavor Daqu from seven different origins to study the fungal composition and the effects of the fungal composition on the physicochemical properties and volatile organic compounds (VOCs). It was found that the fungal composition influences the physicochemical properties of Daqu. Specifically, there was a positive link between Rhizomucor, Rhizopus, Thermomyces, and liquefying activity and a positive correlation between Aspergillus and fermenting activity. Furthermore, the relationships between esterifying activity and Thermomyces, Rhizomucor, Aspergillus, Pichia, and Saccharomycopsis were found to be positive. The VOCs in Daqu were affected by Aspergillus, Issatchenkia, Pichia, and Thermoascus. Issatchenkia was significantly positively correlated with benzeneethanol as well as Aspergillus and pentadecanoic acid ethyl ester, ethyl myristate. Pichia and Thermoascus were significantly negatively correlated with benzaldehyde and 2-furaldehyde. This study deepens our understanding of the relationship between VOCs, the physicochemical properties with microbial communities, and reference significance for the production of better-quality strong-flavor Daqu.

7.
Foods ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540914

ABSTRACT

This research endeavored to elucidate the antioxidant attributes of lactic acid bacteria, specifically their impact on anti-aging and lifespan augmentation in Caenorhabditis elegans. The study focused on Lactiplantibacillus plantarum A72, identified through ARTP mutagenesis for its potent antioxidant properties. In vitro analysis affirmed its free radical neutralizing capacity. In C. elegans, the strain not only extended the lifespan by 25.13% and amplified motility 2.52-fold, but also maintained reproductive capabilities. Remarkably, Lpb. plantarum A72 diminished reactive oxygen species (ROS) and malondialdehyde (MDA) levels in C. elegans by 34.86% and 69.52%, respectively, while concurrently enhancing its antioxidant enzyme activities. The strain also bolstered C. elegans survival rates by 46.33% and 57.78% under high temperature and H2O2 conditions, respectively. Transcriptomic scrutiny revealed that Lpb. plantarum A72 could retard C. elegans aging and extend lifespan by upregulating the sod-5 and hsp-16.1 genes and downregulating the fat-6 and lips-17 genes. These findings propose Lpb. plantarum A72 as a potential antioxidant and anti-aging lactic acid bacteria.

8.
J Sci Food Agric ; 104(7): 4050-4057, 2024 May.
Article in English | MEDLINE | ID: mdl-38353320

ABSTRACT

BACKGROUND: Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS: In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION: To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.


Subject(s)
Ergothioneine , Monascus , Rhodotorula , Humans , Animals , Rhodotorula/genetics , Rhodotorula/metabolism , Antioxidants/metabolism , Histidine , Fermentation , Monascus/metabolism
9.
Food Chem X ; 21: 101174, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38362527

ABSTRACT

Unsaturated aliphatic aldehyde oxidation plays a significant role in the deep oxidation of fatty acids to produce volatile chemicals. Exposing the oxidation process of unsaturated aliphatic aldehydes is crucial to completely comprehend how food flavor forms. In this study, thermal desorption cryo-trapping in conjunction with gas chromatography-mass spectrometry was used to examine the volatile profile of (E)-4-decenal during heating, and 32 volatile compounds in all were detected and identified. Meanwhile, density functional theory (DFT) calculations were used, and 43 reactions were obtained in the 24 pathways, which were summarized into the peroxide reaction mechanism (ROOH), the peroxyl radical reaction mechanism (ROO·) and the alkoxy radical reaction mechanism (RO·). Moreover, the priority of these three oxidative mechanisms was the RO· mechanism > ROOH mechanism > ROO· mechanism. Furthermore, the DFT results and experimental results agreed well, and the oxidative mechanism of (E)-4-decenal was finally illuminated.

10.
Food Microbiol ; 119: 104447, 2024 May.
Article in English | MEDLINE | ID: mdl-38225049

ABSTRACT

Yarrowia lipolytica N12 and A13 with high lipase activity obtained by mutagenesis were inoculated into sour meat, and their effects on physicochemical properties, microbial community succession, free amino acids, and volatile compounds of sour meat were investigated. Inoculation fermentation increased the contents of free amino acids observably, rapidly reduced pH, promoted the accumulation of total acids, decreased 2-thiobarbituric acid reactive substances (TBARS) values. In addition, the addition of Y. lipolytica might contribute to the growth of lactic acid bacteria, Candida spp., and Debaryomyces udenii, which play an important role in production of volatile compounds. It was shown that inoculation promoted the production of esters, aldehydes, and alcohols, especially ethyl esters, giving sour meat a better meat flavor. Besides, it was found that Y. lipolytica A13 had better fermenting property. Sample of A13 group had higher contents of ethyl esters, free amino acids and dominant microorganisms. The results may help to provide new strains for sour meat fermentation.


Subject(s)
Lactobacillales , Saccharomycetales , Yarrowia , Yarrowia/genetics , Esters/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Fermentation , Amino Acids/metabolism , Meat
11.
Insect Sci ; 31(2): 405-416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37464965

ABSTRACT

The Masculinizer gene, Masc, encodes a lepidopteran-specific novel CCCH-type zinc finger protein, which controls sex determination and dosage compensation in Bombyx mori. Considering the potential application of it in pest control, it is necessary to investigate the function of Masc gene in Hyphantria cunea, a globally invasive forest pest. In the present study, we identified and functionally characterized the Masc gene, HcMasc, in H. cunea. Sequence analysis revealed that HcMASC contained the conserved CCCH-type zinc finger domain, nuclear localization signal, and male determining domain, in which the last was confirmed to be required for its masculinization in BmN cell line. However, expression data showed that unlike male-biased expression in B. mori, HcMasc gene expresses in main all developmental stages or tissues in both sexes. Clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based disruption of the common exons 1 and 3 of the HcMasc gene resulted in imbalanced sex ratio and abnormal external genitalia of both sexes. Our results suggest that the HcMasc gene is required for both male and female sexual differentiation and dosage compensation in H. cunea and provide a foundation for developing better strategies to control this pest.


Subject(s)
Bombyx , Moths , Female , Male , Animals , Sex Differentiation/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/genetics , Moths/metabolism , Bombyx/genetics , Zinc Fingers/genetics
12.
Bioresour Technol ; 393: 130101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013036

ABSTRACT

Ergothioneine (EGT) is a high-value natural antioxidant that cannot be synthesized by the human body. This study showed that Rhodotorula mucilaginosa DL-X01 can use untreated molasses and fish bone meal enzymatic hydrolysate as the substrates to synthesize EGT. By optimizing the growth conditions, the EGT yield reached 29.39 mg/L when molasses and fish bone meal (FBM) were added at 60 g/L and 400 g/L respectively. Finally, the EGT yield was increased to 216.25 mg/L by fed-batch fermentation in a 5 L bioreactor. Compared with the fermentation by yeast extract peptone dextrose medium, the feedstock cost of EGT production was reduced by 330.91 % by using molasses and FBM as substrates. These results showed that R. mucilaginosa DL-X01 can produce high-value EGT using two cheap processing by-products, molasses and FBM, which is of great significance for environmental protection and sustainable development.


Subject(s)
Ergothioneine , Minerals , Rhodotorula , Animals , Humans , Molasses , Cost-Benefit Analysis , Fermentation , Biological Products
13.
Food Chem X ; 19: 100737, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780285

ABSTRACT

Oleic acid oxidation is one of the main sources of food flavor compounds. Volatile profiling was investigated using thermal desorption cryo-trapping combined with gas chromatography-mass spectrometry to analyze the volatile composition of oleic acid oxidation. A total of 43 volatile compounds, including aldehydes (11), ketones (2), alcohols (5), furans (2), acids (8), ester (12) and alkane (3) were identified from oleic acid during heating. Then, density functional theory (DFT) was applied to analyze the oxidative mechanism of oleic acid during heating. A total of 30 reactions were obtained and grouped into the peroxide (ROOH), alkoxy radical (RO•), and peroxide radical (ROO•) pathways. The structures of intermediates, transition states (TS), and products in each reaction were also determined. Results show that the branch chemical reactions were the key reactions in different reaction pathway. Moreover, the reaction priority of the thermal oxidation reaction of oleic acid was the peroxide radical mechanism > the peroxide mechanism > the alkoxy radical mechanism.

14.
BMC Pediatr ; 23(1): 516, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845615

ABSTRACT

Sepsis is a life-threatening multiple-organ injury caused by disordered host immune response to microbial infection. However, the correlation between gut microbiota dysbiosis and immune indicators remains unexplored. To address this gap in knowledge, we carried out 16 S rDNA sequencing, analyzed clinical fecal samples from children with sepsis (n = 30) and control children (n = 25), and obtained immune indicators, including T cell subtypes (CD3+, CD3+CD4+, CD3+CD8+, and CD4/CD8), NK cells, cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ), and immunoglobulin indices (IgA, IgE, IgM and IgG). In addition, we analyzed the correlation between gut microbiota dysbiosis and immune indicators, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. We found that children with sepsis exhibited gut bacterial dysbiosis and low alpha diversity. The Spearman's rank correlation coefficient suggested that Rhodococcus erythropolis had a significantly positive correlation with IFN-γ and CD3+ T cells. Klebsiella pneumoniae and Streptococcus mitis were significantly correlated with NK cells. Bacteroides uniformis was significantly positively correlated with IgM and erythrocyte sedimentation rate, and Eubacterium eligens was significantly positively correlated with IL-4 and CD3+CD8+ T cells. The biomarkers discovered in this study had strong discriminatory power. These changes in the gut microbiome may be closely related to immunologic dysfunction and to the development or exacerbation of sepsis. However, a large sample size is required for verification.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Child , Gastrointestinal Microbiome/physiology , CD8-Positive T-Lymphocytes , Dysbiosis , Interleukin-4 , Bacteria/genetics , Biomarkers , Immunoglobulin M
15.
Foods ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835218

ABSTRACT

Cider flavor has a very important impact on the quality. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) combined with gas chromatography-ion mobility spectrometry (GC-IMS) tested different kinds of non-Saccharomyces yeasts and Saccharomyces cerevisiae (S. cerevisiae) co-inoculated for the fermentation of cider to determine differences in aroma material, and the determination of odor activity value (OAV) is applied less frequently in research. Through Rhodotorula mucilaginosa, Debaryomyces hansenii, Zygosaccharomyces bailii, and Kluyveromyces Marxianus, four different strains of non-Saccharomyces yeast fermented cider, and it was found that, in both the chemical composition and flavor of material things, compared with monoculture-fermented cider using S. cerevisiae, all differences were significant. Co-inoculated fermentation significantly improved the flavor and taste of cider. As in the volatile compounds of OVA > 1, octanoic acid (Sc 633.88 µg/L, co-inoculation fermented group 955.49 µg/L) provides vegetable cheese fragrance and decanoic acid, ethyl ester (Sc 683.19 µg/L, co-inoculation fermented group 694.98 µg/L) a creamy fruity fragrance, etc., and the average content increased after co-inoculated fermentation. Phenylethyl alcohol, which can produce a rose scent, was relatively abundant in cider samples and varied greatly among the groups. Moreover, the contents of ethyl lactate and 1-butanol in the Sc+Rm (ciders fermented by S. cerevisiae and R. mucilaginosa) were the highest of all of the cider samples. Different types of non-Saccharomyces yeast produced cider with different flavor characteristics. This study demonstrates that different species of non-Saccharomyces yeast do have an important impact on the characteristics of cider and that co-inoculation with non-Saccharomyces yeast and S. cerevisiae for cider fermentation may be a strategy to improve the flavor of cider.

16.
Foods ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835277

ABSTRACT

Morganella morganii, a spoilage bacterium in fermented foods, produces harmful biogenic amines (BAs). Although Lactiplantibacillus plantarum is widely used to inhibit spoilage bacteria, the inhibition pattern and inhibition mechanism of M. morganii by Lpb. plantarum are not well studied. In this study, we analysed the effects of the addition of Lpb. plantarum cell-free supernatant (CFS) on the growth and BA accumulation of M. morganii and revealed the mechanisms of changes in different BAs by using RNA sequencing transcriptome analysis. The results showed that Lpb. plantarum CFS could significantly inhibit M. morganii BAs in a weak acid environment (pH 6), and the main changes were related to metabolism. Carbohydrate and energy metabolism were significantly down-regulated, indicating that Lpb. plantarum CFS inhibited the growth activity and decreased the BA content of M. morganii. In addition, the change in histamine content is also related to the metabolism of its precursor amino acids, the change in putrescine content may also be related to the decrease in precursor amino acid synthesis and amino acid transporter, and the decrease in cadaverine content may also be related to the decrease in the cadaverine transporter. The results of this study help to inhibit the accumulation of harmful metabolites in fermented foods.

17.
Int J Biol Macromol ; 253(Pt 3): 126762, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683750

ABSTRACT

The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.


Subject(s)
Lignin , Populus , Lignin/metabolism , Mixed Function Oxygenases/metabolism , Trees , Populus/metabolism , CRISPR-Cas Systems/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
18.
ANZ J Surg ; 93(12): 2820-2827, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37614050

ABSTRACT

BACKGROUND: To compare the clinical outcomes and prognosis of total pancreatectomy (TP) and pancreaticoduodenectomy (PD) for the treatment of pancreatic ductal adenocarcinoma (PDAC), and to explore the safety and indications of TP. METHODS: A systematic search was conducted on PubMed, Web of Science, and Embase databases from January 1943 to March 2023 for literatures comparing TP and PD in the treatment of PDAC. The primary outcome was postoperative overall survival (OS), and secondary outcomes included surgery time, blood loss, readmission, hospital stay, perioperative mortality, and overall morbidity. Fixed-effect or random-effect models were selected based on heterogeneity, and odds ratio (OR), mean difference (MD), or hazard ratio (HR) with 95% confidence intervals (CI) were calculated. RESULTS: A total of six studies involving 8396 patients were included in the meta-analysis. There was no statistically significant difference in OS after surgery between the two groups (HR = 1.08, 95% CI: 0.91-1.27; P = 0.38). The TP group had a longer surgery time (MD = 13.66, 95% CI: 4.57-22.75; P = 0.003) and more blood loss (MD = 133.17, 95% CI: 8.00-258.33; P = 0.04) than the PD group. There were no significant differences between the two groups in terms of hospital stay (MD = 0.09, 95% CI: -2.04 to 2.22; P = 0.93), readmission rate (OR = 1.39; 95% CI: 1.00-1.92; P = 0.05), perioperative mortality (OR = 1.29, 95% CI: 0.98-1.69; P = 0.07), and overall morbidity (OR = 0.80, 95% CI: 0.50-1.26; P = 0.33). CONCLUSION: The surgical process of TP is relatively complex, but there is no difference in short-term clinical outcomes and OS compared to PD, making it a safe and reliable procedure. Indications and treatment outcomes for planned TP and salvage TP may differ, and more research is needed in the future for further classification and verification.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatectomy/methods , Pancreaticoduodenectomy/methods , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/surgery , Prognosis
19.
Langmuir ; 39(35): 12384-12391, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37607010

ABSTRACT

A series of carbazole-based vinyl-benzoxazole derivatives have been synthesized in order to verify whether X-ray diffraction (XRD) simulation can give more information about intermolecular stacking in the gel phase. It was found that their gelation capabilities were strongly dependent on the length of the alkyl chain. The compounds with shorter alkyl chains have lower critical gelation concentrations (CGCs) in nonpolar alkane and alcohols with longer carbon chains. On the other hand, compounds with long alkyl chains presented small CGCs in polar methanol. Powder XRD structure solution gave more information about intermolecular stacking than the traditional way of analyzing diffraction peaks to derive approximate molecular stacking patterns. The results verified that gelators had a similar head-to-tail π-stacking between aromatic groups in gel phases although different slipping angles existed. Moreover, ordered stacking between the alkyl chains was also present.

20.
Foods ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569112

ABSTRACT

Ethyl carbamate (EC), a 2A carcinogen produced during the fermentation of foods and beverages, primarily occurs in distilled spirits. Currently, most studies focus on strategies for EC mitigation. In the present research, we aimed to screen strains that can degrade EC directly. Here, we report two Candida ethanolica strains (J1 and J116), isolated from fermented grains, which can reduce EC concentrations directly. These two yeasts were grown using EC as the sole carbon source, and they grew well on different carbon sources. Notably, after immobilization with chitosan, the two strains degraded EC in Chinese Baijiu by 42.27% and 27.91% in 24 h (from 253.03 ± 9.89 to 146.07 ± 1.67 and 182.42 ± 5.05 µg/L, respectively), which was better than the performance of the non-immobilized strains. Furthermore, the volatile organic compound content, investigated using gas chromatography-mass spectrometry, did not affect the main flavor substances in Chinese Baijiu. Thus, the yeasts J1 and J116 may be potentially used for the treatment and commercialization of Chinese Baijiu.

SELECTION OF CITATIONS
SEARCH DETAIL
...