Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556120

ABSTRACT

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Subject(s)
Antioxidants , Hesperidin , Spinal Cord Injuries , Rats , Animals , Caspase 3/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Apoptosis , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Spinal Cord
2.
Environ Sci Pollut Res Int ; 31(4): 6125-6143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147252

ABSTRACT

The spatial variability of hydrogeological parameters is a significant source of uncertainty in groundwater numerical modeling and has a certain risk impact on the prediction of pollutant migration and transformation. Current research has focused on the effects of single-parameter spatial variant random fields or utilizing random sampling methods to randomly combine multiple-parameter spatial variant random fields while ignoring the correlation between parameters. This paper proposes an innovative concept of associated random variables to construct multi-parameter synergistic spatial variant random fields, ensuring both the spatial variability and inherent correlation of the parameters. A hypothetical case was constructed, and the Monte Carlo sampling experiment based on computer simulation was used to assess groundwater pollution risks with multiple associated parameters. The results show that hydraulic conductivity and porosity are the main sensitive parameters. The associated random variable allows for the representation of positive correlation, negative correlation, and no correlation between the hydraulic conductivity and porosity. The pollutant mass concentrations in each observation well conform to the generalized extreme value distribution, and the pollution risks of each water well as well as the concentration distribution intervals of pollutants with different probabilities can be obtained. The influence of associated parameters on the cumulative risk of contaminants in observation wells and pollution degree range is only related to their mathematical distribution and is independent of correlations between parameters. This study addresses the issues of spatial variability and inherent correlation of hydrogeological parameters, which are of great significance for groundwater pollution risk assessment and the promotion of sustainable water quality management of groundwater resources.


Subject(s)
Environmental Pollutants , Groundwater , Water Pollutants, Chemical , Computer Simulation , Environmental Pollution , Risk Assessment , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
Angew Chem Int Ed Engl ; 62(52): e202312609, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37955317

ABSTRACT

The percentage of low response and adaptive resistance to current antibody-based immune checkpoint blockade (ICB) therapy requires the development of novel immunotherapy strategies. Here, we developed an aptamer-assisted immune checkpoint blockade (Ap-ICB) against sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), a novel immune suppressor broadly upregulated on cancer cells and tumor infiltrating myeloid cells, which is mutually exclusive of programmed cell death ligand 1 (PD-L1). Using protein aptamer selection, we identified WXY3 aptamer with high affinity against Siglec-15 protein/Siglec-15 positive cells. We demonstrated that WXY3 aptamer rescued antigen-specific T cell responses in vitro and in vivo. Importantly, the WXY3 Ap-ICB against Siglec-15 amplified anti-tumor immunity in the tumor microenvironment and inhibited tumor growth/metastasis in syngeneic mouse model, which may result from enhanced macrophage and T cell functionality. In addition, by using aptamer-based spherical nucleic acids, we developed a synergetic ICB strategy of multivalent binding and steric hindrance, which further improves the in vivo anti-tumor effect. Taken together, our results support Ap-ICB targeted Siglec-15 as a potential strategy for normalization cancer immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Mice , Animals , Neoplasms/drug therapy , Immunotherapy/methods , Immunoglobulins/pharmacology , Immunoglobulins/therapeutic use , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/pharmacology , Sialic Acids/pharmacology , Tumor Microenvironment , Membrane Proteins
4.
Nat Commun ; 14(1): 6541, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848408

ABSTRACT

Extracellular vesicle (EV) secretion is a dynamic process crucial to cellular communication. Temporally sorting EVs, i.e., separating the newly-produced ones from the pre-existing, can allow not only deep understanding of EV dynamics, but also the discovery of potential EV biomarkers that are related to disease progression or responsible to drug intervention. However, the high similarity between the nascent and pre-existing EVs makes temporal separation extremely challenging. Here, by co-translational introduction of azido groups to act as a timestamp for click chemistry labelling, we develop a microfluidic-based strategy to enable selective isolation of nascent EVs stimulated by an external cue. In two mouse models of anti-PD-L1 immunotherapy, we demonstrate the strategy's feasibility and reveal the high positive correlation of nascent PD-L1+ EV level to tumor volume, suggesting an important role of nascent EVs in response to immunotherapy in cancer treatment.


Subject(s)
Extracellular Vesicles , Microfluidics , Mice , Animals , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Protein Transport
5.
Nat Protoc ; 18(10): 2975-2997, 2023 10.
Article in English | MEDLINE | ID: mdl-37670036

ABSTRACT

Structural DNA nanotechnology can be programmed into complex designer structures with molecular precision for directing a wide range of inorganic and biological materials. However, the use of DNA-templated approaches for the fabrication and performance requirements of ultra-scaled semiconductor electronics is limited by its assembly disorder and destructive interface composition. In this protocol, using carbon nanotubes (CNTs) as model semiconductors, we provide a stepwise process to build ultra-scaled, high-performance field-effect transistors (FETs) from micron-scale three-dimensional DNA templates. We apply the approach to assemble CNT arrays with uniform pitches scaled between 24.1 and 10.4 nm with yields of more than 95%, which exceeds the resolution limits of conventional lithography. To achieve highly clean CNT interfaces, we detail a rinsing-after-fixing step to remove residual DNA template and salt contaminations present around the contact and the channel regions, without modifying the alignment of the CNT arrays. The DNA-templated CNT FETs display both high on-state current (4-15 µA per CNT) and small subthreshold swing (60-100 mV per decade), which are superior to previous examples of biotemplated electronics and match the performance metrics of high-performance, silicon-based electronics. The scalable assembly of defect-free three-dimensional DNA templates requires 1 week and the CNT arrays can be synthesized within half a day. The interface engineering requires 1-2 d, while the fabrication of high-performance FET and logic gate circuits requires 2-4 d. The structural and performance characterizations of molecular-precise DNA self-assembly and high-performance electronics requires 1-2 d. The protocol is suited for users with expertise in DNA nanotechnology and semiconductor electronics.


Subject(s)
Nanotubes, Carbon , Transistors, Electronic , Nanotubes, Carbon/chemistry , Semiconductors , DNA , Electronics
6.
Toxicon ; 233: 107234, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37543293

ABSTRACT

Clostridium septicum alpha toxin (CSA) plays significant roles in ruminant's braxy. Genetically engineered CSA has been shown to function as a potential vaccine candidate in the prevention of the disease caused by Clostridium septicum. In the present study, we synthesized a non-toxic recombinant, rCSAm4/TMD by introducing four amino acid substitutions (C86L/N296A/H301A/W342A) and 11-amino-acid deletion (residues 212 to 222). Compared to recombinant CSA, rCSAm4/TMD showed no cytotoxicity to MDCK cells and was not fatal to mice. Moreover, rCSAm4/TMD could protect immunized mice against 5 × mouse LD100 (100% lethal dose) of crude CSA without obvious pathological change. Most importantly, rabbits immunized with rCSAm4/TMD produced high titers of neutralizing antibodies which protected the rabbits against crude CSA challenge. These data suggest that genetically detoxified rCSAm4/TMD is a potential subunit vaccine candidate against braxy.


Subject(s)
Clostridium Infections , Clostridium septicum , Rabbits , Animals , Mice , Clostridium Infections/prevention & control , Antibodies, Neutralizing , Bacterial Vaccines
7.
Heliyon ; 9(6): e17314, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389065

ABSTRACT

Atherosclerosis preferentially develops at bifurcations exposed to disturbed flow. Plexin D1 (PLXND1) responds to mechanical forces and drives macrophage accumulation in atherosclerosis. Here, multiple strategies were used to identify the role of PLXND1 in site-specific atherosclerosis. Using computational fluid dynamics and three-dimensional light-sheet fluorescence-microscopy, the elevated PLXND1 in M1 macrophages was mainly distributed in disturbed flow area of ApoE-/- carotid bifurcation lesions, and visualization of atherosclerosis in vivo was achieved by targeting PLXND1. Subsequently, to simulate the microenvironment of bifurcation lesions in vitro, we co-cultured oxidized low-density lipoprotein (oxLDL)-treated THP-1-derived macrophages with shear-treated human umbilical vein endothelial cells (HUVECs). We found that oscillatory shear induced the increase of PLXND1 in M1 macrophages, and knocking down PLXND1 inhibited M1 polarization. Semaphorin 3E, the ligand of PLXND1 which was highly expressed in plaques, strongly enhanced M1 macrophage polarization via PLXND1 in vitro. Our findings provide insights into pathogenesis in site-specific atherosclerosis that PLXND1 mediates disturbed flow-induced M1 macrophage polarization.

8.
EBioMedicine ; 90: 104509, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905783

ABSTRACT

BACKGROUND: Intraplaque haemorrhage (IPH) drives atherosclerosis progression and is a key imaging biomarker of unstable plaques. Non-invasive and sensitive monitoring of IPH is challenging due to the compositional complexity and dynamic nature of atherosclerotic plaques. Magnetic particle imaging (MPI) is a highly sensitive, radiation-free, and no-tissue-background tomographic technique that detects superparamagnetic nanoparticles. Thus, we aimed to investigate whether MPI can in vivo detect and monitor IPH. METHODS: Thirty human carotid endarterectomy samples were collected and scanned with MPI. The tandem stenosis (TS) model was employed to establish unstable plaques with IPH in ApoE-/- mice. MPI and 7 T T1-weighted magnetic resonance imaging (MRI) were performed on TS ApoE-/- mice. Plaque specimens were analyzed histologically. FINDINGS: Human carotid endarterectomy samples exhibited endogenous MPI signals, which histologically colocalized with IPH. In vitro experiments identified haemosiderin, a haemoglobin degradation product, as a potential source of MPI signals. Longitudinal MPI of TS ApoE-/- mice detected IPH at unstable plaques, of which MPI signal-to-noise ratio values increased from 6.43 ± 1.74 (four weeks) to 10.55 ± 2.30 (seven weeks) and reduced to 7.23 ± 1.44 (eleven weeks). In contrast, 7 T T1-weighted MRI did not detect the small-size IPH (329.91 ± 226.82 µm2) at four weeks post-TS. The time-course changes in IPH were shown to correlate with neovessel permeability providing a possible mechanism for signal changes over time. INTERPRETATION: MPI is a highly sensitive imaging technology that allows the identification of atherosclerotic plaques with IPH and may help detect and monitor unstable plaques in patients. FUNDING: This work was supported in part by the Beijing Natural Science Foundation under Grant JQ22023; the National Key Research and Development Program of China under Grant 2017YFA0700401; the National Natural Science Foundation of China under Grant 62027901, 81827808, 81730050, 81870178, 81800221, 81527805, and 81671851; the CAS Youth Innovation Promotion Association under Grant Y2022055 and CAS Key Technology Talent Program; and the Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703).


Subject(s)
Atherosclerosis , Carotid Stenosis , Plaque, Atherosclerotic , Humans , Animals , Mice , Adolescent , Plaque, Atherosclerotic/pathology , Carotid Arteries/pathology , Carotid Stenosis/pathology , Magnetic Resonance Imaging , Hemorrhage/diagnostic imaging , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Hemoglobins
9.
Angew Chem Int Ed Engl ; 62(15): e202218106, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36722696

ABSTRACT

Recently, lysosome targeting chimeras (LYTACs) have emerged as a promising technology that expands the scope of targeted protein degradation to extracellular targets. However, the preparation of chimeras by conjugation of the antibody and trivalent N-acetylgalactosamine (tri-GalNAc) is a complex and time-consuming process. The large uncertainty in number and position and the large molecular weights of the chimeras result in low internalization efficiency. To circumvent these problems, we developed the first aptamer-based LYTAC (Apt-LYTAC) to realize liver-cell-specific degradation of extracellular and membrane proteins by conjugating aptamers to tri-GalNAc. Taking advantage of the facile synthesis and low molecular weight of the aptamer, the Apt-LYTACs can efficiently and quickly degrade the extracellular protein PDGF and the membrane protein PTK7 through a lysosomal degradation pathway. We anticipate that the novel Apt-LYTACs will expand the usage of aptamers and provide a new dimension for targeted protein degradation.


Subject(s)
Aptamers, Nucleotide , Membrane Proteins , Antibodies , Lysosomes
10.
Front Cell Infect Microbiol ; 13: 1295311, 2023.
Article in English | MEDLINE | ID: mdl-38162583

ABSTRACT

Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Mice , Vancomycin , Colistin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
11.
Phys Med Biol ; 67(17)2022 08 25.
Article in English | MEDLINE | ID: mdl-35926483

ABSTRACT

Objective.In this study, we propose the adaptive permissible region based random Kaczmarz method as an improved reconstruction method to recover small carotid atherosclerotic plaque targets in rodents with high resolution in fluorescence molecular tomography (FMT).Approach.We introduce the random Kaczmarz method as an advanced minimization method to solve the FMT inverse problem. To satisfy the special condition of this method, we proposed an adaptive permissible region strategy based on traditional permissible region methods to flexibly compress the dimension of the solution space.Main results.Monte Carlo simulations, phantom experiments, andin vivoexperiments demonstrate that the proposed method can recover the small carotid atherosclerotic plaque targets with high resolution and accuracy, and can achieve lower root mean squared error and distance error (DE) than other traditional methods. For targets with 1.5 mm diameter and 0.5 mm separation, the DE indicators can be improved by up to 40%. Moreover, the proposed method can be utilized forin vivolocating atherosclerotic plaques with high accuracy and robustness.Significance.We applied the random Kaczmarz method to solve the inverse problem in FMT and improve the reconstruction result via this advanced minimization method. We verified that the FMT technology has a great potential to locate and quantify atherosclerotic plaques with higher accuracy, and can be expanded to more preclinical research.


Subject(s)
Plaque, Atherosclerotic , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Plaque, Atherosclerotic/diagnostic imaging , Tomography/methods , Tomography, X-Ray Computed
12.
BMC Vet Res ; 18(1): 281, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842628

ABSTRACT

BACKGROUND: Paratuberculosis is a widespread chronic infection of Mycobacterium avium subspecies paratuberculosis (MAP) that causes significant economic losses to the sheep industry. The current study investigated this disease, which causes diarrhea in sheep, particularly, in Bayannaoer, Inner Mongolia, China. Diagnosis was based on clinical symptoms, pathological autopsy, histopathological inspection, and serological and molecular methods. RESULTS: MAP was confirmed using polymerase chain reaction using DNA extracted from tissue and fecal samples. Serum samples from 472 individual sheep were obtained to detect antibodies against MAP using an enzyme-linked immunosorbent assay. MAP antibodies were separately detected in 17.86% (35/196) and 18.48% (51/276) of sheep herds at approximately 6 months and ≥ 1 year of age, respectively. The tissue lesion and pathological section results were consistent with paratuberculosis infection. CONCLUSIONS: To our knowledge, this is the first report of Mycobacterium avium subspecies paratuberculosis seroprevalence in Bayannaoer sheep in Inner Mongolia. Our findings show that MAP is not only prevalent, but also a potential threat to this region. Further investigations, including long-term epidemiological surveillance and isolation are needed for the awareness and effective treatment of paratuberculosis in sheep of Inner Mongolia.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Sheep Diseases , Animals , China/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Farms , Feces/microbiology , Paratuberculosis/diagnosis , Seroepidemiologic Studies , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/microbiology
13.
Biomed Opt Express ; 13(3): 1292-1311, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414974

ABSTRACT

Stripe artifacts can deteriorate the quality of light sheet fluorescence microscopy (LSFM) images. Owing to the inhomogeneous, high-absorption, or scattering objects located in the excitation light path, stripe artifacts are generated in LSFM images in various directions and types, such as horizontal, anisotropic, or multidirectional anisotropic. These artifacts severely degrade the quality of LSFM images. To address this issue, we proposed a new deep-learning-based approach for the elimination of stripe artifacts. This method utilizes an encoder-decoder structure of UNet integrated with residual blocks and attention modules between successive convolutional layers. Our attention module was implemented in the residual blocks to learn useful features and suppress the residual features. The proposed network was trained and validated by generating three different degradation datasets with different types of stripe artifacts in LSFM images. Our method can effectively remove different stripes in generated and actual LSFM images distorted by stripe artifacts. Besides, quantitative analysis and extensive comparison results demonstrated that our method performs the best compared with classical image-based processing algorithms and other powerful deep-learning-based destriping methods for all three generated datasets. Thus, our method has tremendous application prospects to LSFM, and its use can be easily extended to images reconstructed by other modalities affected by the presence of stripe artifacts.

14.
Stem Cell Res Ther ; 12(1): 99, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536065

ABSTRACT

BACKGROUND: Reendothelialisation is the natural pathway that inhibits neointimal hyperplasia and in-stent restenosis. Circulating endothelial progenitor cells (EPCs) derived from bone marrow (BM) might contribute to endothelial repair. However, the temporal and spatial distributions of reendothelialisation and neointimal hyperplasia after EPC transplantation in injured arteries are currently unclear. METHODS: A carotid balloon injury (BI) model was established in Sprague-Dawley rats, and PKH26-labelled BM-derived EPCs were transplanted after BI. The carotid arteries were harvested on the first, fourth, seventh, and 14th day post-injury and analysed via light-sheet fluorescence microscopy and pathological staining (n = 3). EPC and human umbilical vein endothelial cell culture supernatants were collected, and blood samples were collected before and after transplantation. The paracrine effects of VEGF, IGF-1, and TGF-ß1 in cell culture supernatants and serum were analysed by enzyme-linked immunosorbent assay (n = 4). RESULTS: Transplanted EPCs labelled with PKH26 were attached to the injured luminal surface the first day after BI. In the sham operation group, the transplanted EPCs did not adhere to the luminal surface. From the fourth day after BI, the mean fluorescence intensity of PKH26 decreased significantly. However, reendothelialisation and inhibition of neointimal hyperplasia were significantly promoted by transplanted EPCs. The degree of reendothelialisation of the EPC7d and EPC14d groups was higher than that of the BI7d and BI14d groups, and the difference in neointimal hyperplasia was observed between the EPC14d and BI14d groups. The number of endothelial cells on the luminal surface of the EPC14d group was higher than that of the BI14d group. The number of infiltrated macrophages in the injured artery decreased in the EPC transplanted groups. CONCLUSIONS: Transplanted EPCs had chemotactic enrichment and attached to the injured arterial luminal surface. Although decreasing significantly after the fourth day at the site of injury after transplantation, transplanted EPCs could still promote reendothelialisation and inhibit neointimal hyperplasia. The underlying mechanism is through paracrine cytokines and not differentiation into mature endothelial cells.


Subject(s)
Endothelial Progenitor Cells , Animals , Carotid Arteries , Catheters , Endothelial Progenitor Cells/pathology , Hyperplasia/pathology , Rats , Rats, Sprague-Dawley
15.
Toxicol Mech Methods ; 30(3): 219-227, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31805805

ABSTRACT

Flurochloridone (FLC) is a widely used herbicide in developing countries. Although the testes are a target organ for FLC in rats, the adverse effects of FLC on testes have not been fully elucidated. To clarify them, we performed RNA-seq analysis using the testes of FLC-treated rats from our previous subchronic toxicity tests. Unilateral testes of three male rats from solvent control groupand three FLC-treated groups (3 mg/kg, 31.25 mg/kg and 125 mg/kg) were used for RNA extraction. A poly A selection protocol coupled with an Illumina TruSeq RNA-Seq library protocol was used to construct RNA-Seq libraries. Principal component analysis (PCA), differentially expressed gene (DEG) analysis, and hierarchical clustering analysis (HCA) were conducted using R. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to understand the biological characteristics of the DEGs using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The results indicated that many up-regulated DEGs were enriched in pathways associated with testicular injury, such as mitogen-activated protein kinase (MAPK) signaling, lysosome and focal adhesion. Many down-regulated DEGs were enriched in pathways associated with testicular reproduction function, such as sexual reproduction, spermatogenesis and germ cell development. Moreover, we confirmed the oral no-observed-adverse-effect level (NOAEL) of 3 mg/kg in subchronic toxicity test, because the overall testicular gene expression in 3 mg/kg FLC-treated group was similar to that of the solvent control group. In 31.25 mg/kg and 125 mg/kg groups, DEGs revealed that testicular injury was related to oxidative stress.


Subject(s)
Herbicides/toxicity , Pyrrolidinones/toxicity , Sequence Analysis, RNA , Testis/drug effects , Animals , Gene Expression Profiling , Male , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Testis/metabolism , Tumor Suppressor Protein p53/physiology
16.
Article in English | MEDLINE | ID: mdl-30769872

ABSTRACT

A ninety-day toxicity and toxicokinetics of flurochloridone (FLC) were studied in male Wistar rats with oral administration at doses of 3 mg/kg and 10 mg/kg respectively, following the previous study. Apparent toxicity to reproductive system of male rats was still observed at the dose of 10 mg/kg, trace amounts of FLC were still detected 24 hours after administration, testicular weight, epididymal weight and serum testosterone were significantly reduced and sperm abnormalities in epididymis were significantly increased. No abnormalities were found in 3 mg/kg group, it indicated that no-observed-adverse-effect level (NOAEL) of FLC in male rats was 3 mg/kg/day, far below the dose of 20 mg/kg/day reported by European Food Safety Authority (EFSA). Therefore, more attention should be paid to this herbicide.


Subject(s)
Dose-Response Relationship, Drug , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Pyrrolidinones/toxicity , Testis/drug effects , Administration, Oral , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Toxicity Tests, Subchronic
17.
Phytomedicine ; 40: 1-9, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29496161

ABSTRACT

BACKGROUND: The nuclear factor erythroid 2-related factor 2 (Nrf2) is a potential molecular target for cancer chemoprevention. Si-Wu-Tang (SWT), a popular traditional Chinese medicine for women's health, was reported with a novel activity of cancer prevention. PURPOSE: The present study was aimed to identify the bioactive constituents in SWT responsible for the Nrf2 activating and cancer preventive activity and explore the pharmacological mechanisms. METHODS: Nine compounds detectable from various batches of SWT were ranked using in silico molecular docking based on their ability to interfere the forming of Nrf2-Keap1 complex. The predicted Nrf2 activating effect was validated using the antioxidant response element (ARE) luciferase reporter assay and quantitative RT-PCR analysis for select Nrf2 regulated genes Hmox1, Nqo1 and Slc7a11. The antimutagenic activity of the compounds were determined by the Ames test. The chemopreventive activity of these compounds were assessed on EGF-induced neoplastic transformation of JB6 P+ cells, an established non-cancerous murine epidermal model for studying tumor promotion and identifying cancer preventive agents. These compounds were further characterized using luciferase reporter assay on EGF-induced activation of AP-1, a known transcription factor mediating carcinogenesis. RESULTS: Three of the nine compounds predicted as Nrf2 activators by molecular docking, gallic acid (GA), Z-liguistilide (LIG), and senkyunolide A (SA), were confirmed with highest potency of increasing the Nrf2/ARE promoter activity and upregulating the expression of Hmox1, Nqo1 and Slc7a11. In addition, GA, LIG and SA exhibited an antimutagenic activity against the direct mutagen 2-nitrofluorene while no mutagenic effects were observed at the same time in Ames test. At nontoxic concentrations, GA, LIG, and SA inhibited EGF-induced neoplastic transformation of JB6 P+ cells. Combined treatment of GA, LIG and SA, in the same ratio as detected in SWT, showed enhanced effect against JB6 transformation compared with that of the single compound alone. GA, LIG and SA, alone or in combination, suppressed EGF-induced activation of AP-1. CONCLUSION: We identified three bioactive constituents in SWT responsible for the Nrf2 activating and cancer preventive activity. This study provides evidence supporting novel molecular basis of SWT in cancer prevention.


Subject(s)
Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , NF-E2-Related Factor 2/metabolism , Animals , Antioxidant Response Elements/drug effects , Antioxidant Response Elements/genetics , Cell Line , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation/drug effects , Heme Oxygenase-1 , Humans , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Signal Transduction/drug effects , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
18.
Nutrients ; 9(3)2017 Mar 18.
Article in English | MEDLINE | ID: mdl-28335476

ABSTRACT

Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women's diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT's activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF)-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in 'Sensitivity to Carcinogenesis' (SENCAR) mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA), and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB.


Subject(s)
Anticarcinogenic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Drugs, Chinese Herbal/pharmacology , Hyperplasia/prevention & control , Skin/drug effects , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , DNA Damage/drug effects , Female , Gene Expression Regulation , Genes, Reporter , Hyperplasia/etiology , Mice , Mice, Inbred SENCAR , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Skin/pathology , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
19.
Genome Announc ; 4(6)2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27979957

ABSTRACT

Trueperella pyogenes is a significant pathogen of livestock, causing diverse diseases, such as mastitis, liver abscessation, and pneumonia. In this study, we have reported the genome sequence of Trueperella pyogenes 2012CQ-ZSH. Moreover, several genes coding for virulence factors were found, such as pyolysin (PYO), nanH, nanP, cbpA, fimC, and fimE.

20.
Environ Sci Technol ; 50(17): 9652-60, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27443216

ABSTRACT

Fluorochloridone (FLC) is a herbicide used worldwide that is thought to be safe. However, due to its potential genotoxicity, cytotoxicity, and even systematic toxicity, there are increasing concerns about human exposure to this compound. Thus, the metabolism and bioactivation of FLC was investigated. After oral administration to mice, 27 metabolites were identified by ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry and with further structural identification by nuclear magnetic resonance spectroscopy. Hydroxylation and oxidative dechlorination were the major phase I pathways, while glutathione (GSH) and N-acetylcysteine conjugations were two major phase II pathways, indicating the formation of a reactive intermediate. In vitro microsomal and cytosolic studies revealed that a GSH conjugate (M13) was the predominant metabolite of FLC formed through a nucleophilic SN2 substitution of 3-Cl by GSH; this pathway is NADPH independent and accelerated by glutathione S-transferase (GST). Further, a kinetic study showed that M13 formation in both human liver microsomes and cytosols obeyed typical Michaelis-Menten kinetics. The maximum clearance (Vmax/Km) of GSH conjugation in human liver microsomes was approximately 5.5-fold higher than human liver cytosol, thus implying that microsomal GST was mainly responsible for M13 formation. These findings are important for understanding the potential hazard of human exposure to FLC.


Subject(s)
Microsomes, Liver/metabolism , Spectrometry, Mass, Electrospray Ionization , Animals , Glutathione/metabolism , Glutathione Transferase/metabolism , Herbicides/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...