Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38624155

ABSTRACT

The novel 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) groups immobilized on functional polymers or nanoparticles emerged as potential Pickering interfacial catalysts (PICs) for effective catalysis in biphasic systems. In this study, a snowman-shaped Janus-structured polymer with TEMPO-anchored nanohybrid particles (SM-JPP-TEMPO) was prepared and employed as a potential PIC in the Anelli-Montanari system for the selective oxidation of alcohol. The amphiphilic character of SM-JPP-TEMPO particles plays a dual role as an emulsifier and catalyst in the Pickering emulsion. As a result, it enables smaller droplets (102 µm) at the water-in-oil (W/O) interface and reduces the interfacial tension from 26.58 to 17.38 mN/m, which improves the stability of the Pickering emulsion system. This constructed Pickering emulsion microreactor offers a larger interface contact area and shortens the mass transfer distance of the substrate of cinnamyl alcohol, which significantly enhances the catalytic conversion at the Anelli-Montanari oxidation system, thus achieving remarkable conversion efficiency of (92.3%) with excellent selectivity (99%) in static (stirring-free) condition. It was found that the Janus nanohybrid catalyst (SM-JPP-TEMPO) enhanced 1.29-fold catalytic efficiency compared to the TEMPO grafted spherical polystyrene nanoparticle (PS-NPs-TEMPO) catalyst (72%). Moreover, after seven consecutive cycles, the Janus nanocatalyst (SM-JPP-TEMPO) maintained the conversion significantly. Hence, these results collectively highlight that the amphiphilic SM-JPP-TEMPO catalyst provides an efficient and eco-friendly strategy for the intensification of liquid-liquid biphasic reaction systems for potential applications in industries.

2.
Front Immunol ; 14: 1156239, 2023.
Article in English | MEDLINE | ID: mdl-37153576

ABSTRACT

As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.


Subject(s)
Neoplasms , Signal Transduction , Humans , Manganese , Manganese Compounds/pharmacology , Oxides/therapeutic use , Nucleotidyltransferases/metabolism , Neoplasms/drug therapy
3.
Front Immunol ; 14: 1128840, 2023.
Article in English | MEDLINE | ID: mdl-36926351

ABSTRACT

Manganese (Mn), a nutrient inorganic trace element, is necessary for a variety of physiological processes of animal body due to their important roles in oxidative regulation effects and other aspects of activities. Moreover, manganese ion (Mn2+) has widely reported to be crucial for the regulations of different immunological responses, thus showing promising application as potential adjuvants and immunotherapeutics. Taking the advantages of Mn-based biological and immunological activities, Manganese dioxide nanoparticles (MnO2 NPs) are a new type of inorganic nanomaterials with numerous advantages, including simple preparation, low cost, environmental friendliness, low toxicity, biodegradable metabolism and high bioavailability. MnO2 NPs, as a kind of drug carrier, have also shown the ability to catalyze hydrogen peroxide (H2O2) to produce oxygen (O2) under acidic conditions, which can enhance the efficacy of radiotherapy, chemotherapy and other therapeutics for tumor treatment by remodeling the tumor microenvironment. More importantly, MnO2 NPs also play important roles in immune regulations both in innate and adaptive immunity. In this review, we summarize the biological activities of Manganese, followed by the introduction for the biological and medical functions and mechanisms of MnO2 NPs. What's more, we emphatically discussed the immunological regulation effects and mechanisms of MnO2 NPs, as well as their potentials to serve as adjuvants and immunomodulators, which might benefit the development of novel vaccines and immunotherapies for more effective disease control.


Subject(s)
Nanoparticles , Vaccines , Animals , Manganese Compounds/pharmacology , Manganese Compounds/metabolism , Manganese , Oxides/pharmacology , Hydrogen Peroxide/metabolism , Nanoparticles/metabolism , Oxygen , Immunotherapy
4.
Front Nutr ; 10: 1116051, 2023.
Article in English | MEDLINE | ID: mdl-36819694

ABSTRACT

Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.

5.
Pharmaceutics ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365168

ABSTRACT

Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.

6.
Chem Commun (Camb) ; 58(13): 2228-2231, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35073392

ABSTRACT

The fabrication of shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles is reported for the first time in this work. These novel polymeric JNPs can be applied to an extensive range of applications, wherein nanoparticles with controllable hollow morphologies are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...