Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Repair (Amst) ; 11(1): 74-81, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22088982

ABSTRACT

The repair of DNA double-stranded breaks (DSBs) is essential for cell viability and genome stability. Aberrant repair of DSBs has been linked with cancer predisposition and aging. During the repair of DSBs by non-homologous end joining (NHEJ), DNA ends are brought together, processed and then joined. In eukaryotes, this repair pathway is initiated by the binding of the ring-shaped Ku heterodimer and completed by DNA ligase IV. The DNA ligase IV complex, DNA ligase IV/XRRC4 in humans and Dnl4/Lif1 in yeast, is recruited to DNA ends in vitro and in vivo by an interaction with Ku and, in yeast, Dnl4/Lif1 stabilizes the binding of yKu to in vivo DSBs. Here we have analyzed the interactions of these functionally conserved eukaryotic NHEJ factors with DNA by electron microscopy. As expected, the ring-shaped Ku complex bound stably and specifically to DNA ends at physiological salt concentrations. At a ratio of 1 Ku molecule per DNA end, the majority of DNA ends were occupied by a single Ku complex with no significant formation of linear DNA multimers or circular loops. Both Dnl4/Lif1 and DNA ligase IV/XRCC4 formed complexes with Ku-bound DNA ends, resulting in intra- and intermolecular DNA end bridging, even with non-ligatable DNA ends. Together, these studies, which provide the first visualization of the conserved complex formed by Ku and DNA ligase IV at juxtaposed DNA ends by electron microscopy, suggest that the DNA ligase IV complex mediates end-bridging by engaging two Ku-bound DNA ends.


Subject(s)
Antigens, Nuclear/metabolism , DNA Ligases/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/ultrastructure , Base Sequence , DNA Ligase ATP , DNA Repair , Ku Autoantigen , Microscopy, Electron , Models, Biological , Molecular Sequence Data , Oligonucleotides/metabolism , Saccharomyces cerevisiae/cytology , Staining and Labeling , Substrate Specificity
2.
J Mol Biol ; 392(3): 614-29, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19627991

ABSTRACT

The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy-the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-A crystal structure of the PA octamer. The octamer comprises approximately 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.


Subject(s)
Antigens, Bacterial , Bacillus anthracis , Bacterial Toxins , Ion Channels , Protein Multimerization , Protein Structure, Quaternary , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacillus anthracis/chemistry , Bacillus anthracis/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Electrophysiology , Guinea Pigs , Humans , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/metabolism , Mass Spectrometry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Peptide
SELECTION OF CITATIONS
SEARCH DETAIL
...